Copied to
clipboard

G = Q8:9SD16order 128 = 27

3rd semidirect product of Q8 and SD16 acting through Inn(Q8)

p-group, metabelian, nilpotent (class 3), monomial

Aliases: Q8:9SD16, C42.526C23, C4.1432+ 1+4, (C8xQ8):24C2, C8:18(C4oD4), C8:5D4:28C2, C4:C4.284D4, Q8o2(C4.Q8), Q8:3Q8:12C2, C4:SD16:45C2, (C4xSD16):49C2, (C2xQ8).274D4, C4.50(C2xSD16), D4.D4:46C2, C4:C4.443C23, C4:C8.352C22, (C2xC4).584C24, (C2xC8).378C23, (C4xC8).283C22, Q8:6D4.10C2, C4:Q8.212C22, C2.38(Q8:6D4), (C2xD4).279C23, (C4xD4).218C22, (C4xQ8).315C22, (C2xQ8).263C23, C2.34(C22xSD16), C4.Q8.186C22, C2.111(D4oSD16), C4:1D4.105C22, C22.844(C22xD4), D4:C4.191C22, Q8:C4.189C22, (C2xSD16).102C22, C4.162(C2xC4oD4), (C2xC4).1106(C2xD4), SmallGroup(128,2124)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — Q8:9SD16
C1C2C4C2xC4C42C4xD4Q8:6D4 — Q8:9SD16
C1C2C2xC4 — Q8:9SD16
C1C22C4xQ8 — Q8:9SD16
C1C2C2C2xC4 — Q8:9SD16

Generators and relations for Q8:9SD16
 G = < a,b,c,d | a4=c8=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=a2b, bd=db, dcd=c3 >

Subgroups: 416 in 202 conjugacy classes, 96 normal (18 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2xC4, C2xC4, C2xC4, D4, Q8, Q8, C23, C42, C42, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, SD16, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4xC8, D4:C4, Q8:C4, C4:C8, C4.Q8, C4xD4, C4xQ8, C4xQ8, C4xQ8, C4:D4, C42.C2, C4:1D4, C4:Q8, C2xSD16, C2xC4oD4, C4xSD16, C8xQ8, C4:SD16, D4.D4, C8:5D4, Q8:6D4, Q8:3Q8, Q8:9SD16
Quotients: C1, C2, C22, D4, C23, SD16, C2xD4, C4oD4, C24, C2xSD16, C22xD4, C2xC4oD4, 2+ 1+4, Q8:6D4, C22xSD16, D4oSD16, Q8:9SD16

Smallest permutation representation of Q8:9SD16
On 64 points
Generators in S64
(1 30 59 51)(2 52 60 31)(3 32 61 53)(4 54 62 25)(5 26 63 55)(6 56 64 27)(7 28 57 49)(8 50 58 29)(9 20 40 45)(10 46 33 21)(11 22 34 47)(12 48 35 23)(13 24 36 41)(14 42 37 17)(15 18 38 43)(16 44 39 19)
(1 34 59 11)(2 12 60 35)(3 36 61 13)(4 14 62 37)(5 38 63 15)(6 16 64 39)(7 40 57 9)(8 10 58 33)(17 25 42 54)(18 55 43 26)(19 27 44 56)(20 49 45 28)(21 29 46 50)(22 51 47 30)(23 31 48 52)(24 53 41 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 43)(2 46)(3 41)(4 44)(5 47)(6 42)(7 45)(8 48)(9 49)(10 52)(11 55)(12 50)(13 53)(14 56)(15 51)(16 54)(17 64)(18 59)(19 62)(20 57)(21 60)(22 63)(23 58)(24 61)(25 39)(26 34)(27 37)(28 40)(29 35)(30 38)(31 33)(32 36)

G:=sub<Sym(64)| (1,30,59,51)(2,52,60,31)(3,32,61,53)(4,54,62,25)(5,26,63,55)(6,56,64,27)(7,28,57,49)(8,50,58,29)(9,20,40,45)(10,46,33,21)(11,22,34,47)(12,48,35,23)(13,24,36,41)(14,42,37,17)(15,18,38,43)(16,44,39,19), (1,34,59,11)(2,12,60,35)(3,36,61,13)(4,14,62,37)(5,38,63,15)(6,16,64,39)(7,40,57,9)(8,10,58,33)(17,25,42,54)(18,55,43,26)(19,27,44,56)(20,49,45,28)(21,29,46,50)(22,51,47,30)(23,31,48,52)(24,53,41,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,43)(2,46)(3,41)(4,44)(5,47)(6,42)(7,45)(8,48)(9,49)(10,52)(11,55)(12,50)(13,53)(14,56)(15,51)(16,54)(17,64)(18,59)(19,62)(20,57)(21,60)(22,63)(23,58)(24,61)(25,39)(26,34)(27,37)(28,40)(29,35)(30,38)(31,33)(32,36)>;

G:=Group( (1,30,59,51)(2,52,60,31)(3,32,61,53)(4,54,62,25)(5,26,63,55)(6,56,64,27)(7,28,57,49)(8,50,58,29)(9,20,40,45)(10,46,33,21)(11,22,34,47)(12,48,35,23)(13,24,36,41)(14,42,37,17)(15,18,38,43)(16,44,39,19), (1,34,59,11)(2,12,60,35)(3,36,61,13)(4,14,62,37)(5,38,63,15)(6,16,64,39)(7,40,57,9)(8,10,58,33)(17,25,42,54)(18,55,43,26)(19,27,44,56)(20,49,45,28)(21,29,46,50)(22,51,47,30)(23,31,48,52)(24,53,41,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,43)(2,46)(3,41)(4,44)(5,47)(6,42)(7,45)(8,48)(9,49)(10,52)(11,55)(12,50)(13,53)(14,56)(15,51)(16,54)(17,64)(18,59)(19,62)(20,57)(21,60)(22,63)(23,58)(24,61)(25,39)(26,34)(27,37)(28,40)(29,35)(30,38)(31,33)(32,36) );

G=PermutationGroup([[(1,30,59,51),(2,52,60,31),(3,32,61,53),(4,54,62,25),(5,26,63,55),(6,56,64,27),(7,28,57,49),(8,50,58,29),(9,20,40,45),(10,46,33,21),(11,22,34,47),(12,48,35,23),(13,24,36,41),(14,42,37,17),(15,18,38,43),(16,44,39,19)], [(1,34,59,11),(2,12,60,35),(3,36,61,13),(4,14,62,37),(5,38,63,15),(6,16,64,39),(7,40,57,9),(8,10,58,33),(17,25,42,54),(18,55,43,26),(19,27,44,56),(20,49,45,28),(21,29,46,50),(22,51,47,30),(23,31,48,52),(24,53,41,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,43),(2,46),(3,41),(4,44),(5,47),(6,42),(7,45),(8,48),(9,49),(10,52),(11,55),(12,50),(13,53),(14,56),(15,51),(16,54),(17,64),(18,59),(19,62),(20,57),(21,60),(22,63),(23,58),(24,61),(25,39),(26,34),(27,37),(28,40),(29,35),(30,38),(31,33),(32,36)]])

35 conjugacy classes

class 1 2A2B2C2D2E2F4A···4H4I···4O4P4Q4R8A8B8C8D8E···8J
order12222224···44···444488888···8
size11118882···24···488822224···4

35 irreducible representations

dim11111111222244
type+++++++++++
imageC1C2C2C2C2C2C2C2D4D4C4oD4SD162+ 1+4D4oSD16
kernelQ8:9SD16C4xSD16C8xQ8C4:SD16D4.D4C8:5D4Q8:6D4Q8:3Q8C4:C4C2xQ8C8Q8C4C2
# reps13133311314812

Matrix representation of Q8:9SD16 in GL4(F17) generated by

4000
01300
00160
00016
,
0100
16000
0010
0001
,
0400
4000
00010
001210
,
01300
4000
0010
00116
G:=sub<GL(4,GF(17))| [4,0,0,0,0,13,0,0,0,0,16,0,0,0,0,16],[0,16,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,4,0,0,4,0,0,0,0,0,0,12,0,0,10,10],[0,4,0,0,13,0,0,0,0,0,1,1,0,0,0,16] >;

Q8:9SD16 in GAP, Magma, Sage, TeX

Q_8\rtimes_9{\rm SD}_{16}
% in TeX

G:=Group("Q8:9SD16");
// GroupNames label

G:=SmallGroup(128,2124);
// by ID

G=gap.SmallGroup(128,2124);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,120,758,100,346,80,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^8=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<