Extensions 1→N→G→Q→1 with N=C2 and Q=C8.12D4

Direct product G=N×Q with N=C2 and Q=C8.12D4
dρLabelID
C2×C8.12D464C2xC8.12D4128,1878


Non-split extensions G=N.Q with N=C2 and Q=C8.12D4
extensionφ:Q→Aut NdρLabelID
C2.1(C8.12D4) = C42.60Q8central extension (φ=1)128C2.1(C8.12D4)128,578
C2.2(C8.12D4) = C42.433D4central extension (φ=1)64C2.2(C8.12D4)128,690
C2.3(C8.12D4) = (C2×C4)⋊9SD16central extension (φ=1)64C2.3(C8.12D4)128,700
C2.4(C8.12D4) = (C2×C4)⋊6Q16central extension (φ=1)128C2.4(C8.12D4)128,701
C2.5(C8.12D4) = (C2×C4)⋊6D8central extension (φ=1)64C2.5(C8.12D4)128,702
C2.6(C8.12D4) = C85D8central stem extension (φ=1)64C2.6(C8.12D4)128,438
C2.7(C8.12D4) = C85Q16central stem extension (φ=1)128C2.7(C8.12D4)128,439
C2.8(C8.12D4) = C8212C2central stem extension (φ=1)64C2.8(C8.12D4)128,440
C2.9(C8.12D4) = C825C2central stem extension (φ=1)64C2.9(C8.12D4)128,441
C2.10(C8.12D4) = C8.7Q16central stem extension (φ=1)128C2.10(C8.12D4)128,442
C2.11(C8.12D4) = C823C2central stem extension (φ=1)64C2.11(C8.12D4)128,443
C2.12(C8.12D4) = C42.664C23central stem extension (φ=1)64C2.12(C8.12D4)128,449
C2.13(C8.12D4) = C42.665C23central stem extension (φ=1)128C2.13(C8.12D4)128,450
C2.14(C8.12D4) = C42.666C23central stem extension (φ=1)64C2.14(C8.12D4)128,451
C2.15(C8.12D4) = C42.667C23central stem extension (φ=1)64C2.15(C8.12D4)128,452
C2.16(C8.12D4) = (C22×D8).C2central stem extension (φ=1)64C2.16(C8.12D4)128,744
C2.17(C8.12D4) = (C2×C8).41D4central stem extension (φ=1)64C2.17(C8.12D4)128,747
C2.18(C8.12D4) = (C2×C8).168D4central stem extension (φ=1)64C2.18(C8.12D4)128,824
C2.19(C8.12D4) = (C2×C8).171D4central stem extension (φ=1)128C2.19(C8.12D4)128,829

׿
×
𝔽