Copied to
clipboard

G = C8.7Q16order 128 = 27

3rd non-split extension by C8 of Q16 acting via Q16/C8=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C8.7Q16, C82.4C2, C42.657C23, C4.2(C2×Q16), C4.5(C4○D8), (C2×C8).224D4, C82Q8.7C2, C4⋊Q8.82C22, (C4×C8).370C22, C2.5(C4⋊Q16), C4.SD16.4C2, C2.10(C8.12D4), C22.58(C41D4), (C2×C4).714(C2×D4), SmallGroup(128,442)

Series: Derived Chief Lower central Upper central Jennings

C1C42 — C8.7Q16
C1C2C22C2×C4C42C4×C8C82 — C8.7Q16
C1C22C42 — C8.7Q16
C1C22C42 — C8.7Q16
C1C22C22C42 — C8.7Q16

Generators and relations for C8.7Q16
 G = < a,b,c | a8=b8=1, c2=b4, ab=ba, cac-1=a-1, cbc-1=a4b-1 >

Subgroups: 176 in 84 conjugacy classes, 40 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, C2×C4, C2×C4, Q8, C42, C4⋊C4, C2×C8, C2×Q8, C4×C8, C4×C8, Q8⋊C4, C2.D8, C4⋊Q8, C82, C4.SD16, C82Q8, C8.7Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C41D4, C2×Q16, C4○D8, C4⋊Q16, C8.12D4, C8.7Q16

Smallest permutation representation of C8.7Q16
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 21 34 27 96 42 86 97)(2 22 35 28 89 43 87 98)(3 23 36 29 90 44 88 99)(4 24 37 30 91 45 81 100)(5 17 38 31 92 46 82 101)(6 18 39 32 93 47 83 102)(7 19 40 25 94 48 84 103)(8 20 33 26 95 41 85 104)(9 58 127 51 67 116 74 107)(10 59 128 52 68 117 75 108)(11 60 121 53 69 118 76 109)(12 61 122 54 70 119 77 110)(13 62 123 55 71 120 78 111)(14 63 124 56 72 113 79 112)(15 64 125 49 65 114 80 105)(16 57 126 50 66 115 73 106)
(1 54 96 110)(2 53 89 109)(3 52 90 108)(4 51 91 107)(5 50 92 106)(6 49 93 105)(7 56 94 112)(8 55 95 111)(9 104 67 26)(10 103 68 25)(11 102 69 32)(12 101 70 31)(13 100 71 30)(14 99 72 29)(15 98 65 28)(16 97 66 27)(17 122 46 77)(18 121 47 76)(19 128 48 75)(20 127 41 74)(21 126 42 73)(22 125 43 80)(23 124 44 79)(24 123 45 78)(33 62 85 120)(34 61 86 119)(35 60 87 118)(36 59 88 117)(37 58 81 116)(38 57 82 115)(39 64 83 114)(40 63 84 113)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,21,34,27,96,42,86,97)(2,22,35,28,89,43,87,98)(3,23,36,29,90,44,88,99)(4,24,37,30,91,45,81,100)(5,17,38,31,92,46,82,101)(6,18,39,32,93,47,83,102)(7,19,40,25,94,48,84,103)(8,20,33,26,95,41,85,104)(9,58,127,51,67,116,74,107)(10,59,128,52,68,117,75,108)(11,60,121,53,69,118,76,109)(12,61,122,54,70,119,77,110)(13,62,123,55,71,120,78,111)(14,63,124,56,72,113,79,112)(15,64,125,49,65,114,80,105)(16,57,126,50,66,115,73,106), (1,54,96,110)(2,53,89,109)(3,52,90,108)(4,51,91,107)(5,50,92,106)(6,49,93,105)(7,56,94,112)(8,55,95,111)(9,104,67,26)(10,103,68,25)(11,102,69,32)(12,101,70,31)(13,100,71,30)(14,99,72,29)(15,98,65,28)(16,97,66,27)(17,122,46,77)(18,121,47,76)(19,128,48,75)(20,127,41,74)(21,126,42,73)(22,125,43,80)(23,124,44,79)(24,123,45,78)(33,62,85,120)(34,61,86,119)(35,60,87,118)(36,59,88,117)(37,58,81,116)(38,57,82,115)(39,64,83,114)(40,63,84,113)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,21,34,27,96,42,86,97)(2,22,35,28,89,43,87,98)(3,23,36,29,90,44,88,99)(4,24,37,30,91,45,81,100)(5,17,38,31,92,46,82,101)(6,18,39,32,93,47,83,102)(7,19,40,25,94,48,84,103)(8,20,33,26,95,41,85,104)(9,58,127,51,67,116,74,107)(10,59,128,52,68,117,75,108)(11,60,121,53,69,118,76,109)(12,61,122,54,70,119,77,110)(13,62,123,55,71,120,78,111)(14,63,124,56,72,113,79,112)(15,64,125,49,65,114,80,105)(16,57,126,50,66,115,73,106), (1,54,96,110)(2,53,89,109)(3,52,90,108)(4,51,91,107)(5,50,92,106)(6,49,93,105)(7,56,94,112)(8,55,95,111)(9,104,67,26)(10,103,68,25)(11,102,69,32)(12,101,70,31)(13,100,71,30)(14,99,72,29)(15,98,65,28)(16,97,66,27)(17,122,46,77)(18,121,47,76)(19,128,48,75)(20,127,41,74)(21,126,42,73)(22,125,43,80)(23,124,44,79)(24,123,45,78)(33,62,85,120)(34,61,86,119)(35,60,87,118)(36,59,88,117)(37,58,81,116)(38,57,82,115)(39,64,83,114)(40,63,84,113) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,21,34,27,96,42,86,97),(2,22,35,28,89,43,87,98),(3,23,36,29,90,44,88,99),(4,24,37,30,91,45,81,100),(5,17,38,31,92,46,82,101),(6,18,39,32,93,47,83,102),(7,19,40,25,94,48,84,103),(8,20,33,26,95,41,85,104),(9,58,127,51,67,116,74,107),(10,59,128,52,68,117,75,108),(11,60,121,53,69,118,76,109),(12,61,122,54,70,119,77,110),(13,62,123,55,71,120,78,111),(14,63,124,56,72,113,79,112),(15,64,125,49,65,114,80,105),(16,57,126,50,66,115,73,106)], [(1,54,96,110),(2,53,89,109),(3,52,90,108),(4,51,91,107),(5,50,92,106),(6,49,93,105),(7,56,94,112),(8,55,95,111),(9,104,67,26),(10,103,68,25),(11,102,69,32),(12,101,70,31),(13,100,71,30),(14,99,72,29),(15,98,65,28),(16,97,66,27),(17,122,46,77),(18,121,47,76),(19,128,48,75),(20,127,41,74),(21,126,42,73),(22,125,43,80),(23,124,44,79),(24,123,45,78),(33,62,85,120),(34,61,86,119),(35,60,87,118),(36,59,88,117),(37,58,81,116),(38,57,82,115),(39,64,83,114),(40,63,84,113)]])

38 conjugacy classes

class 1 2A2B2C4A···4F4G4H4I4J8A···8X
order12224···444448···8
size11112···2161616162···2

38 irreducible representations

dim1111222
type+++++-
imageC1C2C2C2D4Q16C4○D8
kernelC8.7Q16C82C4.SD16C82Q8C2×C8C8C4
# reps11426816

Matrix representation of C8.7Q16 in GL4(𝔽17) generated by

13000
0400
0090
0002
,
2000
0900
0010
00016
,
0100
16000
0001
0010
G:=sub<GL(4,GF(17))| [13,0,0,0,0,4,0,0,0,0,9,0,0,0,0,2],[2,0,0,0,0,9,0,0,0,0,1,0,0,0,0,16],[0,16,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C8.7Q16 in GAP, Magma, Sage, TeX

C_8._7Q_{16}
% in TeX

G:=Group("C8.7Q16");
// GroupNames label

G:=SmallGroup(128,442);
// by ID

G=gap.SmallGroup(128,442);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,512,422,268,1123,136,2804,172]);
// Polycyclic

G:=Group<a,b,c|a^8=b^8=1,c^2=b^4,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations

׿
×
𝔽