Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C4×C8

Direct product G=N×Q with N=C2 and Q=C2×C4×C8
dρLabelID
C22×C4×C8128C2^2xC4xC8128,1601


Non-split extensions G=N.Q with N=C2 and Q=C2×C4×C8
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C4×C8) = C2×C8⋊C8central stem extension (φ=1)128C2.1(C2xC4xC8)128,180
C2.2(C2×C4×C8) = C8×M4(2)central stem extension (φ=1)64C2.2(C2xC4xC8)128,181
C2.3(C2×C4×C8) = C82⋊C2central stem extension (φ=1)64C2.3(C2xC4xC8)128,182
C2.4(C2×C4×C8) = C2×C22.7C42central stem extension (φ=1)128C2.4(C2xC4xC8)128,459
C2.5(C2×C4×C8) = C424C8central stem extension (φ=1)128C2.5(C2xC4xC8)128,476
C2.6(C2×C4×C8) = C4×C22⋊C8central stem extension (φ=1)64C2.6(C2xC4xC8)128,480
C2.7(C2×C4×C8) = C8×C22⋊C4central stem extension (φ=1)64C2.7(C2xC4xC8)128,483
C2.8(C2×C4×C8) = C4×C4⋊C8central stem extension (φ=1)128C2.8(C2xC4xC8)128,498
C2.9(C2×C4×C8) = C8×C4⋊C4central stem extension (φ=1)128C2.9(C2xC4xC8)128,501
C2.10(C2×C4×C8) = C2×C165C4central stem extension (φ=1)128C2.10(C2xC4xC8)128,838
C2.11(C2×C4×C8) = C4×M5(2)central stem extension (φ=1)64C2.11(C2xC4xC8)128,839
C2.12(C2×C4×C8) = C162M5(2)central stem extension (φ=1)64C2.12(C2xC4xC8)128,840

׿
×
𝔽