direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C8×M4(2), C82⋊14C2, C23.24C42, C42.741C23, C8⋊6(C2×C8), C8○3(C4⋊C8), C4.9(C4×C8), C8○(C8⋊C8), C4⋊C8.25C4, (C4×C8).16C4, C8○2(C8⋊C4), C8⋊C8⋊24C2, C8○2(C22⋊C8), C22.9(C4×C8), C8⋊C4.20C4, C4.51(C8○D4), C22⋊C8.23C4, (C22×C8).26C4, C4.32(C22×C8), (C2×C4).58C42, C2.1(C4×M4(2)), (C4×C8).441C22, C42.241(C2×C4), C4.56(C2×M4(2)), C8○(C42.12C4), (C2×M4(2)).36C4, (C4×M4(2)).32C2, C22.21(C2×C42), C2.1(C8○2M4(2)), C42.12C4.49C2, (C2×C42).1028C22, C2.2(C2×C4×C8), (C2×C4×C8).7C2, (C4×C8)○(C8⋊C4), (C2×C8)○(C8⋊C8), (C4×C8)○(C8⋊C8), (C2×C4).49(C2×C8), (C2×C8)○(C4×M4(2)), (C4×C8)○(C2×M4(2)), (C2×C8).262(C2×C4), (C2×C4).578(C22×C4), (C22×C4).430(C2×C4), (C2×C8)○(C42.12C4), SmallGroup(128,181)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C8×M4(2)
G = < a,b,c | a8=b8=c2=1, ab=ba, ac=ca, cbc=b5 >
Subgroups: 132 in 112 conjugacy classes, 92 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C4×C8, C4×C8, C8⋊C4, C22⋊C8, C4⋊C8, C2×C42, C22×C8, C2×M4(2), C82, C8⋊C8, C2×C4×C8, C4×M4(2), C42.12C4, C8×M4(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C42, C2×C8, M4(2), C22×C4, C4×C8, C2×C42, C22×C8, C2×M4(2), C8○D4, C2×C4×C8, C4×M4(2), C8○2M4(2), C8×M4(2)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 48 10 61 31 23 35 52)(2 41 11 62 32 24 36 53)(3 42 12 63 25 17 37 54)(4 43 13 64 26 18 38 55)(5 44 14 57 27 19 39 56)(6 45 15 58 28 20 40 49)(7 46 16 59 29 21 33 50)(8 47 9 60 30 22 34 51)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(49 62)(50 63)(51 64)(52 57)(53 58)(54 59)(55 60)(56 61)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,10,61,31,23,35,52)(2,41,11,62,32,24,36,53)(3,42,12,63,25,17,37,54)(4,43,13,64,26,18,38,55)(5,44,14,57,27,19,39,56)(6,45,15,58,28,20,40,49)(7,46,16,59,29,21,33,50)(8,47,9,60,30,22,34,51), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,10,61,31,23,35,52)(2,41,11,62,32,24,36,53)(3,42,12,63,25,17,37,54)(4,43,13,64,26,18,38,55)(5,44,14,57,27,19,39,56)(6,45,15,58,28,20,40,49)(7,46,16,59,29,21,33,50)(8,47,9,60,30,22,34,51), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,48,10,61,31,23,35,52),(2,41,11,62,32,24,36,53),(3,42,12,63,25,17,37,54),(4,43,13,64,26,18,38,55),(5,44,14,57,27,19,39,56),(6,45,15,58,28,20,40,49),(7,46,16,59,29,21,33,50),(8,47,9,60,30,22,34,51)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(49,62),(50,63),(51,64),(52,57),(53,58),(54,59),(55,60),(56,61)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4L | 4M | ··· | 4R | 8A | ··· | 8P | 8Q | ··· | 8BD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C4 | C4 | C8 | M4(2) | C8○D4 |
kernel | C8×M4(2) | C82 | C8⋊C8 | C2×C4×C8 | C4×M4(2) | C42.12C4 | C4×C8 | C8⋊C4 | C22⋊C8 | C4⋊C8 | C22×C8 | C2×M4(2) | M4(2) | C8 | C4 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 32 | 8 | 8 |
Matrix representation of C8×M4(2) ►in GL3(𝔽17) generated by
15 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 9 |
13 | 0 | 0 |
0 | 0 | 13 |
0 | 16 | 0 |
1 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 1 |
G:=sub<GL(3,GF(17))| [15,0,0,0,9,0,0,0,9],[13,0,0,0,0,16,0,13,0],[1,0,0,0,16,0,0,0,1] >;
C8×M4(2) in GAP, Magma, Sage, TeX
C_8\times M_4(2)
% in TeX
G:=Group("C8xM4(2)");
// GroupNames label
G:=SmallGroup(128,181);
// by ID
G=gap.SmallGroup(128,181);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,56,120,758,136,172]);
// Polycyclic
G:=Group<a,b,c|a^8=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^5>;
// generators/relations