Extensions 1→N→G→Q→1 with N=C2 and Q=C4×M4(2)

Direct product G=N×Q with N=C2 and Q=C4×M4(2)
dρLabelID
C2×C4×M4(2)64C2xC4xM4(2)128,1603


Non-split extensions G=N.Q with N=C2 and Q=C4×M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C4×M4(2)) = C8×M4(2)central extension (φ=1)64C2.1(C4xM4(2))128,181
C2.2(C4×M4(2)) = C4×C8⋊C4central extension (φ=1)128C2.2(C4xM4(2))128,457
C2.3(C4×M4(2)) = C4×C22⋊C8central extension (φ=1)64C2.3(C4xM4(2))128,480
C2.4(C4×M4(2)) = C4×C4⋊C8central extension (φ=1)128C2.4(C4xM4(2))128,498
C2.5(C4×M4(2)) = C89M4(2)central stem extension (φ=1)64C2.5(C4xM4(2))128,183
C2.6(C4×M4(2)) = C8215C2central stem extension (φ=1)64C2.6(C4xM4(2))128,185
C2.7(C4×M4(2)) = C86M4(2)central stem extension (φ=1)64C2.7(C4xM4(2))128,187
C2.8(C4×M4(2)) = C23.28C42central stem extension (φ=1)64C2.8(C4xM4(2))128,460
C2.9(C4×M4(2)) = C43.C2central stem extension (φ=1)128C2.9(C4xM4(2))128,477
C2.10(C4×M4(2)) = C42.378D4central stem extension (φ=1)64C2.10(C4xM4(2))128,481
C2.11(C4×M4(2)) = C23.17C42central stem extension (φ=1)64C2.11(C4xM4(2))128,485
C2.12(C4×M4(2)) = C43.7C2central stem extension (φ=1)128C2.12(C4xM4(2))128,499
C2.13(C4×M4(2)) = C4⋊C814C4central stem extension (φ=1)128C2.13(C4xM4(2))128,503

׿
×
𝔽