Extensions 1→N→G→Q→1 with N=C2×Q8⋊C4 and Q=C2

Direct product G=N×Q with N=C2×Q8⋊C4 and Q=C2
dρLabelID
C22×Q8⋊C4128C2^2xQ8:C4128,1623

Semidirect products G=N:Q with N=C2×Q8⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8⋊C4)⋊1C2 = C24.155D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):1C2128,519
(C2×Q8⋊C4)⋊2C2 = C24.65D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):2C2128,520
(C2×Q8⋊C4)⋊3C2 = C24.160D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):3C2128,604
(C2×Q8⋊C4)⋊4C2 = C24.73D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):4C2128,605
(C2×Q8⋊C4)⋊5C2 = (C2×SD16)⋊14C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):5C2128,609
(C2×Q8⋊C4)⋊6C2 = (C2×SD16)⋊15C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):6C2128,612
(C2×Q8⋊C4)⋊7C2 = C24.135D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):7C2128,624
(C2×Q8⋊C4)⋊8C2 = C42.433D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):8C2128,690
(C2×Q8⋊C4)⋊9C2 = (C2×C4)⋊9SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):9C2128,700
(C2×Q8⋊C4)⋊10C2 = C42.119D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):10C2128,715
(C2×Q8⋊C4)⋊11C2 = C233SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):11C2128,732
(C2×Q8⋊C4)⋊12C2 = C232Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):12C2128,733
(C2×Q8⋊C4)⋊13C2 = C24.85D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):13C2128,767
(C2×Q8⋊C4)⋊14C2 = C24.86D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):14C2128,768
(C2×Q8⋊C4)⋊15C2 = C4⋊C4.94D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):15C2128,774
(C2×Q8⋊C4)⋊16C2 = (C2×C4)⋊5SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):16C2128,787
(C2×Q8⋊C4)⋊17C2 = C2×C88D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):17C2128,1779
(C2×Q8⋊C4)⋊18C2 = C2×C8.18D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):18C2128,1781
(C2×Q8⋊C4)⋊19C2 = C2×C42.78C22φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):19C2128,1862
(C2×Q8⋊C4)⋊20C2 = (C22×D8).C2φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):20C2128,744
(C2×Q8⋊C4)⋊21C2 = C2×C22⋊Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):21C2128,1731
(C2×Q8⋊C4)⋊22C2 = C2×D4⋊D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):22C2128,1732
(C2×Q8⋊C4)⋊23C2 = C2×D4.2D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):23C2128,1763
(C2×Q8⋊C4)⋊24C2 = C2×C23.48D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):24C2128,1822
(C2×Q8⋊C4)⋊25C2 = D45Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):25C2128,2031
(C2×Q8⋊C4)⋊26C2 = C42.466C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):26C2128,2033
(C2×Q8⋊C4)⋊27C2 = M4(2).11D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):27C2128,784
(C2×Q8⋊C4)⋊28C2 = (C2×Q8)⋊17D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):28C2128,1745
(C2×Q8⋊C4)⋊29C2 = C42.19C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):29C2128,1778
(C2×Q8⋊C4)⋊30C2 = (C2×D4).302D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):30C2128,1829
(C2×Q8⋊C4)⋊31C2 = C42.43C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):31C2128,2040
(C2×Q8⋊C4)⋊32C2 = C42.47C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):32C2128,2044
(C2×Q8⋊C4)⋊33C2 = (C2×C4)⋊3SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):33C2128,745
(C2×Q8⋊C4)⋊34C2 = (C2×C8).41D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):34C2128,747
(C2×Q8⋊C4)⋊35C2 = C2×Q8⋊D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):35C2128,1730
(C2×Q8⋊C4)⋊36C2 = C2×D4.7D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):36C2128,1733
(C2×Q8⋊C4)⋊37C2 = C2×D4.D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):37C2128,1762
(C2×Q8⋊C4)⋊38C2 = C2×Q8.D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):38C2128,1766
(C2×Q8⋊C4)⋊39C2 = C2×C23.47D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):39C2128,1818
(C2×Q8⋊C4)⋊40C2 = C2×C23.20D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):40C2128,1820
(C2×Q8⋊C4)⋊41C2 = D48SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):41C2128,2030
(C2×Q8⋊C4)⋊42C2 = C42.465C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):42C2128,2032
(C2×Q8⋊C4)⋊43C2 = C42.51C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):43C2128,2048
(C2×Q8⋊C4)⋊44C2 = C42.55C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):44C2128,2052
(C2×Q8⋊C4)⋊45C2 = C24.75D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):45C2128,626
(C2×Q8⋊C4)⋊46C2 = M4(2).49D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):46C2128,640
(C2×Q8⋊C4)⋊47C2 = C42.110D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):47C2128,691
(C2×Q8⋊C4)⋊48C2 = C8⋊(C22⋊C4)φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):48C2128,705
(C2×Q8⋊C4)⋊49C2 = C2×C23.38D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):49C2128,1626
(C2×Q8⋊C4)⋊50C2 = C2×C23.36D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):50C2128,1627
(C2×Q8⋊C4)⋊51C2 = 2- 1+44C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):51C2128,1630
(C2×Q8⋊C4)⋊52C2 = C2×SD16⋊C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):52C2128,1672
(C2×Q8⋊C4)⋊53C2 = C42.276C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):53C2128,1679
(C2×Q8⋊C4)⋊54C2 = C2×C8⋊D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):54C2128,1783
(C2×Q8⋊C4)⋊55C2 = C2×C8.D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):55C2128,1785
(C2×Q8⋊C4)⋊56C2 = M4(2)⋊17D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):56C2128,1795
(C2×Q8⋊C4)⋊57C2 = C2×C42.28C22φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):57C2128,1864
(C2×Q8⋊C4)⋊58C2 = C42.367C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4):58C2128,1869
(C2×Q8⋊C4)⋊59C2 = C2×C23.24D4φ: trivial image64(C2xQ8:C4):59C2128,1624
(C2×Q8⋊C4)⋊60C2 = C2×C4×SD16φ: trivial image64(C2xQ8:C4):60C2128,1669

Non-split extensions G=N.Q with N=C2×Q8⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8⋊C4).1C2 = C42.99D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).1C2128,535
(C2×Q8⋊C4).2C2 = C42.101D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).2C2128,537
(C2×Q8⋊C4).3C2 = (C2×C4)⋊9Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).3C2128,610
(C2×Q8⋊C4).4C2 = C4.68(C4×D4)φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).4C2128,659
(C2×Q8⋊C4).5C2 = C2.(C4×Q16)φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).5C2128,660
(C2×Q8⋊C4).6C2 = C2.(C88D4)φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).6C2128,665
(C2×Q8⋊C4).7C2 = C42.431D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).7C2128,688
(C2×Q8⋊C4).8C2 = (C2×C4)⋊6Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).8C2128,701
(C2×Q8⋊C4).9C2 = C42.117D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).9C2128,713
(C2×Q8⋊C4).10C2 = (C2×Q8)⋊Q8φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).10C2128,756
(C2×Q8⋊C4).11C2 = C4⋊C4.85D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).11C2128,758
(C2×Q8⋊C4).12C2 = C4⋊C4.95D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).12C2128,775
(C2×Q8⋊C4).13C2 = (C2×C4)⋊3Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).13C2128,788
(C2×Q8⋊C4).14C2 = (C2×Q8).8Q8φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).14C2128,798
(C2×Q8⋊C4).15C2 = (C2×C8).52D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).15C2128,800
(C2×Q8⋊C4).16C2 = (C2×C4).19Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).16C2128,804
(C2×Q8⋊C4).17C2 = (C2×Q8).109D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).17C2128,806
(C2×Q8⋊C4).18C2 = C2×C4.SD16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).18C2128,1861
(C2×Q8⋊C4).19C2 = Q8⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).19C2128,595
(C2×Q8⋊C4).20C2 = (C2×C4)⋊2Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).20C2128,748
(C2×Q8⋊C4).21C2 = (C2×C8).60D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).21C2128,827
(C2×Q8⋊C4).22C2 = (C2×C8).171D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).22C2128,829
(C2×Q8⋊C4).23C2 = C2×C42Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).23C2128,1765
(C2×Q8⋊C4).24C2 = C2×C4.Q16φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).24C2128,1806
(C2×Q8⋊C4).25C2 = M4(2).13D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4).25C2128,796
(C2×Q8⋊C4).26C2 = C42.21C23φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4).26C2128,1814
(C2×Q8⋊C4).27C2 = Q8⋊C4⋊C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).27C2128,597
(C2×Q8⋊C4).28C2 = (C2×C8).170D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).28C2128,828
(C2×Q8⋊C4).29C2 = C2×Q8⋊Q8φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).29C2128,1805
(C2×Q8⋊C4).30C2 = C2×Q8.Q8φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).30C2128,1807
(C2×Q8⋊C4).31C2 = Q8⋊C42φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).31C2128,495
(C2×Q8⋊C4).32C2 = C4.10D43C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C464(C2xQ8:C4).32C2128,662
(C2×Q8⋊C4).33C2 = C2.(C8⋊D4)φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).33C2128,667
(C2×Q8⋊C4).34C2 = C42.111D4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).34C2128,692
(C2×Q8⋊C4).35C2 = (C2×Q16)⋊10C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).35C2128,703
(C2×Q8⋊C4).36C2 = C2×Q16⋊C4φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).36C2128,1673
(C2×Q8⋊C4).37C2 = C2×C42.30C22φ: C2/C1C2 ⊆ Out C2×Q8⋊C4128(C2xQ8:C4).37C2128,1866
(C2×Q8⋊C4).38C2 = C4×Q8⋊C4φ: trivial image128(C2xQ8:C4).38C2128,493
(C2×Q8⋊C4).39C2 = C2×C4×Q16φ: trivial image128(C2xQ8:C4).39C2128,1670

׿
×
𝔽