Copied to
clipboard

G = C2xC4xC4:C4order 128 = 27

Direct product of C2xC4 and C4:C4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xC4xC4:C4, C24.639C23, C23.151C24, C4:2(C2xC42), (C2xC4):5C42, (C2xC42):18C4, C42:43(C2xC4), C22.28(C4xQ8), C23.819(C2xD4), (C22xC4).817D4, C22.105(C4xD4), C2.4(C22xC42), (C22xC42).9C2, C23.137(C2xQ8), (C22xC4).108Q8, C22.23(C23xC4), C22.33(C2xC42), C22.57(C22xD4), C23.352(C4oD4), C22.15(C22xQ8), C23.278(C22xC4), (C23xC4).639C22, (C22xC4).1642C23, (C2xC42).1082C22, C22.62(C42:C2), C2.C42.563C22, C4o(C4xC4:C4), C2.2(C2xC4xD4), C2.1(C2xC4xQ8), C2.2(C22xC4:C4), C22.69(C2xC4:C4), (C2xC4).349(C2xQ8), (C2xC4).1552(C2xD4), (C22xC4:C4).50C2, C4o3(C2xC2.C42), C2.3(C2xC42:C2), C22.49(C2xC4oD4), (C2xC4:C4).966C22, (C22xC4).379(C2xC4), (C2xC4).285(C22xC4), (C2xC4)o5(C2.C42), (C2xC2.C42).34C2, (C22xC4)o3(C2.C42), (C2xC4)o(C4xC4:C4), (C22xC4)o(C4xC4:C4), (C2xC4)o3(C2xC2.C42), (C22xC4)o2(C2xC2.C42), SmallGroup(128,1001)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C2xC4xC4:C4
C1C2C22C23C24C23xC4C22xC42 — C2xC4xC4:C4
C1C2 — C2xC4xC4:C4
C1C23xC4 — C2xC4xC4:C4
C1C23 — C2xC4xC4:C4

Generators and relations for C2xC4xC4:C4
 G = < a,b,c,d | a2=b4=c4=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 588 in 464 conjugacy classes, 340 normal (14 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2xC4, C2xC4, C23, C23, C42, C42, C4:C4, C22xC4, C22xC4, C24, C2.C42, C2xC42, C2xC42, C2xC4:C4, C23xC4, C23xC4, C2xC2.C42, C4xC4:C4, C22xC42, C22xC42, C22xC4:C4, C2xC4xC4:C4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C42, C4:C4, C22xC4, C2xD4, C2xQ8, C4oD4, C24, C2xC42, C2xC4:C4, C42:C2, C4xD4, C4xQ8, C23xC4, C22xD4, C22xQ8, C2xC4oD4, C4xC4:C4, C22xC42, C22xC4:C4, C2xC42:C2, C2xC4xD4, C2xC4xQ8, C2xC4xC4:C4

Smallest permutation representation of C2xC4xC4:C4
Regular action on 128 points
Generators in S128
(1 43)(2 44)(3 41)(4 42)(5 104)(6 101)(7 102)(8 103)(9 21)(10 22)(11 23)(12 24)(13 49)(14 50)(15 51)(16 52)(17 46)(18 47)(19 48)(20 45)(25 119)(26 120)(27 117)(28 118)(29 121)(30 122)(31 123)(32 124)(33 61)(34 62)(35 63)(36 64)(37 81)(38 82)(39 83)(40 84)(53 76)(54 73)(55 74)(56 75)(57 78)(58 79)(59 80)(60 77)(65 93)(66 94)(67 95)(68 96)(69 113)(70 114)(71 115)(72 116)(85 108)(86 105)(87 106)(88 107)(89 110)(90 111)(91 112)(92 109)(97 125)(98 126)(99 127)(100 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 72 9 89)(2 69 10 90)(3 70 11 91)(4 71 12 92)(5 61 29 75)(6 62 30 76)(7 63 31 73)(8 64 32 74)(13 87 18 68)(14 88 19 65)(15 85 20 66)(16 86 17 67)(21 110 43 116)(22 111 44 113)(23 112 41 114)(24 109 42 115)(25 79 128 81)(26 80 125 82)(27 77 126 83)(28 78 127 84)(33 121 56 104)(34 122 53 101)(35 123 54 102)(36 124 55 103)(37 119 58 100)(38 120 59 97)(39 117 60 98)(40 118 57 99)(45 94 51 108)(46 95 52 105)(47 96 49 106)(48 93 50 107)
(1 57 45 76)(2 58 46 73)(3 59 47 74)(4 60 48 75)(5 92 98 107)(6 89 99 108)(7 90 100 105)(8 91 97 106)(9 40 51 62)(10 37 52 63)(11 38 49 64)(12 39 50 61)(13 36 23 82)(14 33 24 83)(15 34 21 84)(16 35 22 81)(17 54 44 79)(18 55 41 80)(19 56 42 77)(20 53 43 78)(25 67 123 113)(26 68 124 114)(27 65 121 115)(28 66 122 116)(29 71 117 93)(30 72 118 94)(31 69 119 95)(32 70 120 96)(85 101 110 127)(86 102 111 128)(87 103 112 125)(88 104 109 126)

G:=sub<Sym(128)| (1,43)(2,44)(3,41)(4,42)(5,104)(6,101)(7,102)(8,103)(9,21)(10,22)(11,23)(12,24)(13,49)(14,50)(15,51)(16,52)(17,46)(18,47)(19,48)(20,45)(25,119)(26,120)(27,117)(28,118)(29,121)(30,122)(31,123)(32,124)(33,61)(34,62)(35,63)(36,64)(37,81)(38,82)(39,83)(40,84)(53,76)(54,73)(55,74)(56,75)(57,78)(58,79)(59,80)(60,77)(65,93)(66,94)(67,95)(68,96)(69,113)(70,114)(71,115)(72,116)(85,108)(86,105)(87,106)(88,107)(89,110)(90,111)(91,112)(92,109)(97,125)(98,126)(99,127)(100,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,72,9,89)(2,69,10,90)(3,70,11,91)(4,71,12,92)(5,61,29,75)(6,62,30,76)(7,63,31,73)(8,64,32,74)(13,87,18,68)(14,88,19,65)(15,85,20,66)(16,86,17,67)(21,110,43,116)(22,111,44,113)(23,112,41,114)(24,109,42,115)(25,79,128,81)(26,80,125,82)(27,77,126,83)(28,78,127,84)(33,121,56,104)(34,122,53,101)(35,123,54,102)(36,124,55,103)(37,119,58,100)(38,120,59,97)(39,117,60,98)(40,118,57,99)(45,94,51,108)(46,95,52,105)(47,96,49,106)(48,93,50,107), (1,57,45,76)(2,58,46,73)(3,59,47,74)(4,60,48,75)(5,92,98,107)(6,89,99,108)(7,90,100,105)(8,91,97,106)(9,40,51,62)(10,37,52,63)(11,38,49,64)(12,39,50,61)(13,36,23,82)(14,33,24,83)(15,34,21,84)(16,35,22,81)(17,54,44,79)(18,55,41,80)(19,56,42,77)(20,53,43,78)(25,67,123,113)(26,68,124,114)(27,65,121,115)(28,66,122,116)(29,71,117,93)(30,72,118,94)(31,69,119,95)(32,70,120,96)(85,101,110,127)(86,102,111,128)(87,103,112,125)(88,104,109,126)>;

G:=Group( (1,43)(2,44)(3,41)(4,42)(5,104)(6,101)(7,102)(8,103)(9,21)(10,22)(11,23)(12,24)(13,49)(14,50)(15,51)(16,52)(17,46)(18,47)(19,48)(20,45)(25,119)(26,120)(27,117)(28,118)(29,121)(30,122)(31,123)(32,124)(33,61)(34,62)(35,63)(36,64)(37,81)(38,82)(39,83)(40,84)(53,76)(54,73)(55,74)(56,75)(57,78)(58,79)(59,80)(60,77)(65,93)(66,94)(67,95)(68,96)(69,113)(70,114)(71,115)(72,116)(85,108)(86,105)(87,106)(88,107)(89,110)(90,111)(91,112)(92,109)(97,125)(98,126)(99,127)(100,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,72,9,89)(2,69,10,90)(3,70,11,91)(4,71,12,92)(5,61,29,75)(6,62,30,76)(7,63,31,73)(8,64,32,74)(13,87,18,68)(14,88,19,65)(15,85,20,66)(16,86,17,67)(21,110,43,116)(22,111,44,113)(23,112,41,114)(24,109,42,115)(25,79,128,81)(26,80,125,82)(27,77,126,83)(28,78,127,84)(33,121,56,104)(34,122,53,101)(35,123,54,102)(36,124,55,103)(37,119,58,100)(38,120,59,97)(39,117,60,98)(40,118,57,99)(45,94,51,108)(46,95,52,105)(47,96,49,106)(48,93,50,107), (1,57,45,76)(2,58,46,73)(3,59,47,74)(4,60,48,75)(5,92,98,107)(6,89,99,108)(7,90,100,105)(8,91,97,106)(9,40,51,62)(10,37,52,63)(11,38,49,64)(12,39,50,61)(13,36,23,82)(14,33,24,83)(15,34,21,84)(16,35,22,81)(17,54,44,79)(18,55,41,80)(19,56,42,77)(20,53,43,78)(25,67,123,113)(26,68,124,114)(27,65,121,115)(28,66,122,116)(29,71,117,93)(30,72,118,94)(31,69,119,95)(32,70,120,96)(85,101,110,127)(86,102,111,128)(87,103,112,125)(88,104,109,126) );

G=PermutationGroup([[(1,43),(2,44),(3,41),(4,42),(5,104),(6,101),(7,102),(8,103),(9,21),(10,22),(11,23),(12,24),(13,49),(14,50),(15,51),(16,52),(17,46),(18,47),(19,48),(20,45),(25,119),(26,120),(27,117),(28,118),(29,121),(30,122),(31,123),(32,124),(33,61),(34,62),(35,63),(36,64),(37,81),(38,82),(39,83),(40,84),(53,76),(54,73),(55,74),(56,75),(57,78),(58,79),(59,80),(60,77),(65,93),(66,94),(67,95),(68,96),(69,113),(70,114),(71,115),(72,116),(85,108),(86,105),(87,106),(88,107),(89,110),(90,111),(91,112),(92,109),(97,125),(98,126),(99,127),(100,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,72,9,89),(2,69,10,90),(3,70,11,91),(4,71,12,92),(5,61,29,75),(6,62,30,76),(7,63,31,73),(8,64,32,74),(13,87,18,68),(14,88,19,65),(15,85,20,66),(16,86,17,67),(21,110,43,116),(22,111,44,113),(23,112,41,114),(24,109,42,115),(25,79,128,81),(26,80,125,82),(27,77,126,83),(28,78,127,84),(33,121,56,104),(34,122,53,101),(35,123,54,102),(36,124,55,103),(37,119,58,100),(38,120,59,97),(39,117,60,98),(40,118,57,99),(45,94,51,108),(46,95,52,105),(47,96,49,106),(48,93,50,107)], [(1,57,45,76),(2,58,46,73),(3,59,47,74),(4,60,48,75),(5,92,98,107),(6,89,99,108),(7,90,100,105),(8,91,97,106),(9,40,51,62),(10,37,52,63),(11,38,49,64),(12,39,50,61),(13,36,23,82),(14,33,24,83),(15,34,21,84),(16,35,22,81),(17,54,44,79),(18,55,41,80),(19,56,42,77),(20,53,43,78),(25,67,123,113),(26,68,124,114),(27,65,121,115),(28,66,122,116),(29,71,117,93),(30,72,118,94),(31,69,119,95),(32,70,120,96),(85,101,110,127),(86,102,111,128),(87,103,112,125),(88,104,109,126)]])

80 conjugacy classes

class 1 2A···2O4A···4P4Q···4BL
order12···24···44···4
size11···11···12···2

80 irreducible representations

dim1111111222
type++++++-
imageC1C2C2C2C2C4C4D4Q8C4oD4
kernelC2xC4xC4:C4C2xC2.C42C4xC4:C4C22xC42C22xC4:C4C2xC42C2xC4:C4C22xC4C22xC4C23
# reps128321632448

Matrix representation of C2xC4xC4:C4 in GL5(F5)

10000
01000
00400
00040
00004
,
20000
02000
00400
00010
00001
,
10000
04000
00100
00030
00002
,
30000
04000
00400
00004
00040

G:=sub<GL(5,GF(5))| [1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[2,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,2],[3,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,4,0] >;

C2xC4xC4:C4 in GAP, Magma, Sage, TeX

C_2\times C_4\times C_4\rtimes C_4
% in TeX

G:=Group("C2xC4xC4:C4");
// GroupNames label

G:=SmallGroup(128,1001);
// by ID

G=gap.SmallGroup(128,1001);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,456,268]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<