Copied to
clipboard

G = C4.152+ 1+4order 128 = 27

15th non-split extension by C4 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C4.152+ 1+4, C8⋊D417C2, C88D427C2, Q8⋊D49C2, (C2×D4).155D4, (C2×Q8).131D4, C23.90(C2×D4), C4.Q835C22, C2.D831C22, C22⋊Q86C22, C22⋊SD1610C2, C4⋊C4.139C23, C22⋊C818C22, (C2×C4).398C24, (C2×C8).321C23, (C22×C8)⋊37C22, C2.42(D4○SD16), Q8⋊C432C22, (C2×D4).149C23, C4⋊D4.39C22, (C2×Q8).136C23, (C22×Q8)⋊21C22, C42⋊C219C22, C23.20D425C2, C23.19D426C2, C2.79(C233D4), (C2×M4(2))⋊18C22, (C22×C4).301C23, (C2×SD16).81C22, C22.658(C22×D4), D4⋊C4.104C22, C22.29C24.14C2, (C22×D4).385C22, C23.38C2314C2, (C2×C4).535(C2×D4), (C22×C8)⋊C214C2, (C2×C4○D4).166C22, SmallGroup(128,1932)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C4.152+ 1+4
C1C2C4C2×C4C22×C4C22×D4C22.29C24 — C4.152+ 1+4
C1C2C2×C4 — C4.152+ 1+4
C1C22C2×C4○D4 — C4.152+ 1+4
C1C2C2C2×C4 — C4.152+ 1+4

Generators and relations for C4.152+ 1+4
 G = < a,b,c,d,e | a4=c2=1, b4=e2=a2, d2=a-1b2, dbd-1=ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=a-1b3, be=eb, dcd-1=ece-1=a2c, ede-1=ab2d >

Subgroups: 476 in 205 conjugacy classes, 84 normal (30 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C22⋊C8, D4⋊C4, Q8⋊C4, C4.Q8, C2.D8, C42⋊C2, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C41D4, C4⋊Q8, C22×C8, C2×M4(2), C2×SD16, C22×D4, C22×Q8, C2×C4○D4, (C22×C8)⋊C2, Q8⋊D4, C22⋊SD16, C88D4, C8⋊D4, C23.19D4, C23.20D4, C22.29C24, C23.38C23, C4.152+ 1+4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C233D4, D4○SD16, C4.152+ 1+4

Character table of C4.152+ 1+4

 class 12A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I4J4K8A8B8C8D8E8F
 size 11114448822444888888444488
ρ111111111111111111111111111    trivial
ρ211111-1-11-1111-1-1-1-111-11-1-1-1-111    linear of order 2
ρ31111-1-111111-11-1-1-1-111-111-1-1-11    linear of order 2
ρ41111-11-11-111-1-1111-11-1-1-1-111-11    linear of order 2
ρ511111-1-11-1111-1-11-11-11-11111-1-1    linear of order 2
ρ611111111111111-111-1-1-1-1-1-1-1-1-1    linear of order 2
ρ71111-11-11-111-1-11-11-1-11111-1-11-1    linear of order 2
ρ81111-1-111111-11-11-1-1-1-11-1-1111-1    linear of order 2
ρ91111-11-1-1111-1-111-111-1-111-1-11-1    linear of order 2
ρ101111-1-11-1-111-11-1-11111-1-1-1111-1    linear of order 2
ρ1111111-1-1-11111-1-1-11-11-111111-1-1    linear of order 2
ρ121111111-1-1111111-1-1111-1-1-1-1-1-1    linear of order 2
ρ131111-1-11-1-111-11-1111-1-1111-1-1-11    linear of order 2
ρ141111-11-1-1111-1-11-1-11-111-1-111-11    linear of order 2
ρ151111111-1-111111-1-1-1-1-1-1111111    linear of order 2
ρ1611111-1-1-11111-1-111-1-11-1-1-1-1-111    linear of order 2
ρ17222222-200-2-2-22-2000000000000    orthogonal lifted from D4
ρ182222-2-2-200-2-2222000000000000    orthogonal lifted from D4
ρ192222-22200-2-22-2-2000000000000    orthogonal lifted from D4
ρ2022222-2200-2-2-2-22000000000000    orthogonal lifted from D4
ρ214-44-4000004-4000000000000000    orthogonal lifted from 2+ 1+4
ρ224-44-400000-44000000000000000    orthogonal lifted from 2+ 1+4
ρ2344-4-40000000000000000002-2-2-200    complex lifted from D4○SD16
ρ2444-4-4000000000000000000-2-22-200    complex lifted from D4○SD16
ρ254-4-4400000000000000002-2-2-20000    complex lifted from D4○SD16
ρ264-4-440000000000000000-2-22-20000    complex lifted from D4○SD16

Smallest permutation representation of C4.152+ 1+4
On 32 points
Generators in S32
(1 30 5 26)(2 31 6 27)(3 32 7 28)(4 25 8 29)(9 17 13 21)(10 18 14 22)(11 19 15 23)(12 20 16 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 29)(4 31)(6 25)(8 27)(9 13)(10 20)(11 15)(12 22)(14 24)(16 18)(17 21)(19 23)
(1 23 28 9)(2 12 29 18)(3 21 30 15)(4 10 31 24)(5 19 32 13)(6 16 25 22)(7 17 26 11)(8 14 27 20)
(1 11 5 15)(2 12 6 16)(3 13 7 9)(4 14 8 10)(17 32 21 28)(18 25 22 29)(19 26 23 30)(20 27 24 31)

G:=sub<Sym(32)| (1,30,5,26)(2,31,6,27)(3,32,7,28)(4,25,8,29)(9,17,13,21)(10,18,14,22)(11,19,15,23)(12,20,16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,29)(4,31)(6,25)(8,27)(9,13)(10,20)(11,15)(12,22)(14,24)(16,18)(17,21)(19,23), (1,23,28,9)(2,12,29,18)(3,21,30,15)(4,10,31,24)(5,19,32,13)(6,16,25,22)(7,17,26,11)(8,14,27,20), (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,32,21,28)(18,25,22,29)(19,26,23,30)(20,27,24,31)>;

G:=Group( (1,30,5,26)(2,31,6,27)(3,32,7,28)(4,25,8,29)(9,17,13,21)(10,18,14,22)(11,19,15,23)(12,20,16,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,29)(4,31)(6,25)(8,27)(9,13)(10,20)(11,15)(12,22)(14,24)(16,18)(17,21)(19,23), (1,23,28,9)(2,12,29,18)(3,21,30,15)(4,10,31,24)(5,19,32,13)(6,16,25,22)(7,17,26,11)(8,14,27,20), (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,32,21,28)(18,25,22,29)(19,26,23,30)(20,27,24,31) );

G=PermutationGroup([[(1,30,5,26),(2,31,6,27),(3,32,7,28),(4,25,8,29),(9,17,13,21),(10,18,14,22),(11,19,15,23),(12,20,16,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,29),(4,31),(6,25),(8,27),(9,13),(10,20),(11,15),(12,22),(14,24),(16,18),(17,21),(19,23)], [(1,23,28,9),(2,12,29,18),(3,21,30,15),(4,10,31,24),(5,19,32,13),(6,16,25,22),(7,17,26,11),(8,14,27,20)], [(1,11,5,15),(2,12,6,16),(3,13,7,9),(4,14,8,10),(17,32,21,28),(18,25,22,29),(19,26,23,30),(20,27,24,31)]])

Matrix representation of C4.152+ 1+4 in GL8(𝔽17)

115000000
116000000
016010000
1161600000
00001000
00000100
00000010
00000001
,
001070000
50070000
0125120000
1255120000
00007022
00003101315
00008870
000019310
,
10000000
01000000
101600000
100160000
00001000
00000100
00001010160
000007016
,
100150000
001160000
1160160000
100160000
0000161600
00002100
00001001616
000014721
,
101500000
001610000
101600000
1161600000
00001100
000001600
00001001616
000001001

G:=sub<GL(8,GF(17))| [1,1,0,1,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,5,0,12,0,0,0,0,0,0,12,5,0,0,0,0,10,0,5,5,0,0,0,0,7,7,12,12,0,0,0,0,0,0,0,0,7,3,8,1,0,0,0,0,0,10,8,9,0,0,0,0,2,13,7,3,0,0,0,0,2,15,0,10],[1,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,10,0,0,0,0,0,0,1,10,7,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[1,0,1,1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,0,16,2,10,14,0,0,0,0,16,1,0,7,0,0,0,0,0,0,16,2,0,0,0,0,0,0,16,1],[1,0,1,1,0,0,0,0,0,0,0,16,0,0,0,0,15,16,16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,10,0,0,0,0,0,1,16,0,10,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,1] >;

C4.152+ 1+4 in GAP, Magma, Sage, TeX

C_4._{15}2_+^{1+4}
% in TeX

G:=Group("C4.15ES+(2,2)");
// GroupNames label

G:=SmallGroup(128,1932);
// by ID

G=gap.SmallGroup(128,1932);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,456,758,219,675,1018,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^2=1,b^4=e^2=a^2,d^2=a^-1*b^2,d*b*d^-1=a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=a^-1*b^3,b*e=e*b,d*c*d^-1=e*c*e^-1=a^2*c,e*d*e^-1=a*b^2*d>;
// generators/relations

Export

Character table of C4.152+ 1+4 in TeX

׿
×
𝔽