direct product, cyclic, abelian, monomial
Aliases: C130, also denoted Z130, SmallGroup(130,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C130 |
C1 — C130 |
C1 — C130 |
Generators and relations for C130
G = < a | a130=1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)
G:=sub<Sym(130)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)]])
C130 is a maximal subgroup of
Dic65
130 conjugacy classes
class | 1 | 2 | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 13A | ··· | 13L | 26A | ··· | 26L | 65A | ··· | 65AV | 130A | ··· | 130AV |
order | 1 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 13 | ··· | 13 | 26 | ··· | 26 | 65 | ··· | 65 | 130 | ··· | 130 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
130 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||||
image | C1 | C2 | C5 | C10 | C13 | C26 | C65 | C130 |
kernel | C130 | C65 | C26 | C13 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 4 | 4 | 12 | 12 | 48 | 48 |
Matrix representation of C130 ►in GL2(𝔽131) generated by
71 | 0 |
0 | 65 |
G:=sub<GL(2,GF(131))| [71,0,0,65] >;
C130 in GAP, Magma, Sage, TeX
C_{130}
% in TeX
G:=Group("C130");
// GroupNames label
G:=SmallGroup(130,4);
// by ID
G=gap.SmallGroup(130,4);
# by ID
G:=PCGroup([3,-2,-5,-13]);
// Polycyclic
G:=Group<a|a^130=1>;
// generators/relations
Export