Extensions 1→N→G→Q→1 with N=C2xC12 and Q=S3

Direct product G=NxQ with N=C2xC12 and Q=S3
dρLabelID
S3xC2xC1248S3xC2xC12144,159

Semidirect products G=N:Q with N=C2xC12 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC12):1S3 = C3xD6:C4φ: S3/C3C2 ⊆ Aut C2xC1248(C2xC12):1S3144,79
(C2xC12):2S3 = C6.11D12φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12):2S3144,95
(C2xC12):3S3 = C2xC12:S3φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12):3S3144,170
(C2xC12):4S3 = C12.59D6φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12):4S3144,171
(C2xC12):5S3 = C2xC4xC3:S3φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12):5S3144,169
(C2xC12):6S3 = C6xD12φ: S3/C3C2 ⊆ Aut C2xC1248(C2xC12):6S3144,160
(C2xC12):7S3 = C3xC4oD12φ: S3/C3C2 ⊆ Aut C2xC12242(C2xC12):7S3144,161

Non-split extensions G=N.Q with N=C2xC12 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC12).1S3 = Dic9:C4φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).1S3144,12
(C2xC12).2S3 = D18:C4φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12).2S3144,14
(C2xC12).3S3 = C3xDic3:C4φ: S3/C3C2 ⊆ Aut C2xC1248(C2xC12).3S3144,77
(C2xC12).4S3 = C6.Dic6φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).4S3144,93
(C2xC12).5S3 = C4:Dic9φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).5S3144,13
(C2xC12).6S3 = C2xDic18φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).6S3144,37
(C2xC12).7S3 = C2xD36φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12).7S3144,39
(C2xC12).8S3 = C12:Dic3φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).8S3144,94
(C2xC12).9S3 = C2xC32:4Q8φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).9S3144,168
(C2xC12).10S3 = C4.Dic9φ: S3/C3C2 ⊆ Aut C2xC12722(C2xC12).10S3144,10
(C2xC12).11S3 = D36:5C2φ: S3/C3C2 ⊆ Aut C2xC12722(C2xC12).11S3144,40
(C2xC12).12S3 = C12.58D6φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12).12S3144,91
(C2xC12).13S3 = C2xC9:C8φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).13S3144,9
(C2xC12).14S3 = C4xDic9φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).14S3144,11
(C2xC12).15S3 = C2xC4xD9φ: S3/C3C2 ⊆ Aut C2xC1272(C2xC12).15S3144,38
(C2xC12).16S3 = C2xC32:4C8φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).16S3144,90
(C2xC12).17S3 = C4xC3:Dic3φ: S3/C3C2 ⊆ Aut C2xC12144(C2xC12).17S3144,92
(C2xC12).18S3 = C3xC4.Dic3φ: S3/C3C2 ⊆ Aut C2xC12242(C2xC12).18S3144,75
(C2xC12).19S3 = C3xC4:Dic3φ: S3/C3C2 ⊆ Aut C2xC1248(C2xC12).19S3144,78
(C2xC12).20S3 = C6xDic6φ: S3/C3C2 ⊆ Aut C2xC1248(C2xC12).20S3144,158
(C2xC12).21S3 = C6xC3:C8central extension (φ=1)48(C2xC12).21S3144,74
(C2xC12).22S3 = Dic3xC12central extension (φ=1)48(C2xC12).22S3144,76

׿
x
:
Z
F
o
wr
Q
<