metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D36:5C2, C4.16D18, C12.45D6, Dic18:5C2, C18.4C23, C22.2D18, C36.16C22, D18.1C22, Dic9.2C22, (C2xC4):3D9, (C2xC36):4C2, (C4xD9):4C2, C9:1(C4oD4), C9:D4:3C2, C3.(C4oD12), (C2xC6).27D6, (C2xC12).11S3, C2.5(C22xD9), C6.22(C22xS3), (C2xC18).11C22, SmallGroup(144,40)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D36:5C2
G = < a,b,c | a36=b2=c2=1, bab=a-1, ac=ca, cbc=a18b >
Subgroups: 219 in 60 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C9, Dic3, C12, D6, C2xC6, C4oD4, D9, C18, C18, Dic6, C4xS3, D12, C3:D4, C2xC12, Dic9, C36, D18, C2xC18, C4oD12, Dic18, C4xD9, D36, C9:D4, C2xC36, D36:5C2
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, D9, C22xS3, D18, C4oD12, C22xD9, D36:5C2
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 20)(9 19)(10 18)(11 17)(12 16)(13 15)(28 36)(29 35)(30 34)(31 33)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(60 72)(61 71)(62 70)(63 69)(64 68)(65 67)
(1 62)(2 63)(3 64)(4 65)(5 66)(6 67)(7 68)(8 69)(9 70)(10 71)(11 72)(12 37)(13 38)(14 39)(15 40)(16 41)(17 42)(18 43)(19 44)(20 45)(21 46)(22 47)(23 48)(24 49)(25 50)(26 51)(27 52)(28 53)(29 54)(30 55)(31 56)(32 57)(33 58)(34 59)(35 60)(36 61)
G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(28,36)(29,35)(30,34)(31,33)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(60,72)(61,71)(62,70)(63,69)(64,68)(65,67), (1,62)(2,63)(3,64)(4,65)(5,66)(6,67)(7,68)(8,69)(9,70)(10,71)(11,72)(12,37)(13,38)(14,39)(15,40)(16,41)(17,42)(18,43)(19,44)(20,45)(21,46)(22,47)(23,48)(24,49)(25,50)(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)(36,61) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,20),(9,19),(10,18),(11,17),(12,16),(13,15),(28,36),(29,35),(30,34),(31,33),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(60,72),(61,71),(62,70),(63,69),(64,68),(65,67)], [(1,62),(2,63),(3,64),(4,65),(5,66),(6,67),(7,68),(8,69),(9,70),(10,71),(11,72),(12,37),(13,38),(14,39),(15,40),(16,41),(17,42),(18,43),(19,44),(20,45),(21,46),(22,47),(23,48),(24,49),(25,50),(26,51),(27,52),(28,53),(29,54),(30,55),(31,56),(32,57),(33,58),(34,59),(35,60),(36,61)]])
D36:5C2 is a maximal subgroup of
C42:4D9 Dic18:C4 D36.2C4 D72:7C2 D36.C4 C8:D18 C8.D18 D36:6C22 C36.C23 D4.9D18 D4:6D18 Q8.15D18 C4oD4xD9 D4:8D18 D4.10D18 D108:5C2 D6.D18 D36:5S3 Dic9.D6 D18.3D6 D36:6C6 C36.70D6
D36:5C2 is a maximal quotient of
C4xDic18 C36.6Q8 C42:2D9 C4xD36 C42:7D9 C42:3D9 C23.8D18 C23.9D18 D18:D4 Dic9.D4 Dic9.Q8 D18.D4 D18:Q8 C4:C4:D9 C36.49D4 C23.26D18 C4xC9:D4 C23.28D18 C36:7D4 D108:5C2 D6.D18 D36:5S3 Dic9.D6 D18.3D6 C36.70D6
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 18A | ··· | 18I | 36A | ··· | 36L |
order | 1 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 18 | 18 | 2 | 1 | 1 | 2 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | C4oD4 | D9 | D18 | D18 | C4oD12 | D36:5C2 |
kernel | D36:5C2 | Dic18 | C4xD9 | D36 | C9:D4 | C2xC36 | C2xC12 | C12 | C2xC6 | C9 | C2xC4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 6 | 3 | 4 | 12 |
Matrix representation of D36:5C2 ►in GL2(F37) generated by
12 | 8 |
29 | 4 |
17 | 6 |
26 | 20 |
7 | 14 |
23 | 30 |
G:=sub<GL(2,GF(37))| [12,29,8,4],[17,26,6,20],[7,23,14,30] >;
D36:5C2 in GAP, Magma, Sage, TeX
D_{36}\rtimes_5C_2
% in TeX
G:=Group("D36:5C2");
// GroupNames label
G:=SmallGroup(144,40);
// by ID
G=gap.SmallGroup(144,40);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c|a^36=b^2=c^2=1,b*a*b=a^-1,a*c=c*a,c*b*c=a^18*b>;
// generators/relations