Extensions 1→N→G→Q→1 with N=C3×C24 and Q=C2

Direct product G=N×Q with N=C3×C24 and Q=C2
dρLabelID
C6×C24144C6xC24144,104

Semidirect products G=N:Q with N=C3×C24 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C24)⋊1C2 = C325D8φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):1C2144,88
(C3×C24)⋊2C2 = C3×D24φ: C2/C1C2 ⊆ Aut C3×C24482(C3xC24):2C2144,72
(C3×C24)⋊3C2 = C242S3φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):3C2144,87
(C3×C24)⋊4C2 = C3×C24⋊C2φ: C2/C1C2 ⊆ Aut C3×C24482(C3xC24):4C2144,71
(C3×C24)⋊5C2 = C32×D8φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):5C2144,106
(C3×C24)⋊6C2 = S3×C24φ: C2/C1C2 ⊆ Aut C3×C24482(C3xC24):6C2144,69
(C3×C24)⋊7C2 = C8×C3⋊S3φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):7C2144,85
(C3×C24)⋊8C2 = C24⋊S3φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):8C2144,86
(C3×C24)⋊9C2 = C3×C8⋊S3φ: C2/C1C2 ⊆ Aut C3×C24482(C3xC24):9C2144,70
(C3×C24)⋊10C2 = C32×SD16φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):10C2144,107
(C3×C24)⋊11C2 = C32×M4(2)φ: C2/C1C2 ⊆ Aut C3×C2472(C3xC24):11C2144,105

Non-split extensions G=N.Q with N=C3×C24 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C24).1C2 = C325Q16φ: C2/C1C2 ⊆ Aut C3×C24144(C3xC24).1C2144,89
(C3×C24).2C2 = C3×Dic12φ: C2/C1C2 ⊆ Aut C3×C24482(C3xC24).2C2144,73
(C3×C24).3C2 = C32×Q16φ: C2/C1C2 ⊆ Aut C3×C24144(C3xC24).3C2144,108
(C3×C24).4C2 = C3×C3⋊C16φ: C2/C1C2 ⊆ Aut C3×C24482(C3xC24).4C2144,28
(C3×C24).5C2 = C24.S3φ: C2/C1C2 ⊆ Aut C3×C24144(C3xC24).5C2144,29

׿
×
𝔽