Copied to
clipboard

G = C242S3order 144 = 24·32

2nd semidirect product of C24 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: C242S3, C6.7D12, C12.46D6, C327SD16, C82(C3⋊S3), (C3×C24)⋊3C2, (C3×C6).22D4, C31(C24⋊C2), C324Q81C2, C12⋊S3.1C2, C2.3(C12⋊S3), (C3×C12).32C22, C4.8(C2×C3⋊S3), SmallGroup(144,87)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C242S3
C1C3C32C3×C6C3×C12C12⋊S3 — C242S3
C32C3×C6C3×C12 — C242S3
C1C2C4C8

Generators and relations for C242S3
 G = < a,b,c | a24=b3=c2=1, ab=ba, cac=a11, cbc=b-1 >

Subgroups: 266 in 60 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, D4, Q8, C32, Dic3, C12, D6, SD16, C3⋊S3, C3×C6, C24, Dic6, D12, C3⋊Dic3, C3×C12, C2×C3⋊S3, C24⋊C2, C3×C24, C324Q8, C12⋊S3, C242S3
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, D12, C2×C3⋊S3, C24⋊C2, C12⋊S3, C242S3

Smallest permutation representation of C242S3
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 65 32)(2 66 33)(3 67 34)(4 68 35)(5 69 36)(6 70 37)(7 71 38)(8 72 39)(9 49 40)(10 50 41)(11 51 42)(12 52 43)(13 53 44)(14 54 45)(15 55 46)(16 56 47)(17 57 48)(18 58 25)(19 59 26)(20 60 27)(21 61 28)(22 62 29)(23 63 30)(24 64 31)
(2 12)(3 23)(4 10)(5 21)(6 8)(7 19)(9 17)(11 15)(14 24)(16 22)(18 20)(25 60)(26 71)(27 58)(28 69)(29 56)(30 67)(31 54)(32 65)(33 52)(34 63)(35 50)(36 61)(37 72)(38 59)(39 70)(40 57)(41 68)(42 55)(43 66)(44 53)(45 64)(46 51)(47 62)(48 49)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,65,32)(2,66,33)(3,67,34)(4,68,35)(5,69,36)(6,70,37)(7,71,38)(8,72,39)(9,49,40)(10,50,41)(11,51,42)(12,52,43)(13,53,44)(14,54,45)(15,55,46)(16,56,47)(17,57,48)(18,58,25)(19,59,26)(20,60,27)(21,61,28)(22,62,29)(23,63,30)(24,64,31), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,60)(26,71)(27,58)(28,69)(29,56)(30,67)(31,54)(32,65)(33,52)(34,63)(35,50)(36,61)(37,72)(38,59)(39,70)(40,57)(41,68)(42,55)(43,66)(44,53)(45,64)(46,51)(47,62)(48,49)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,65,32)(2,66,33)(3,67,34)(4,68,35)(5,69,36)(6,70,37)(7,71,38)(8,72,39)(9,49,40)(10,50,41)(11,51,42)(12,52,43)(13,53,44)(14,54,45)(15,55,46)(16,56,47)(17,57,48)(18,58,25)(19,59,26)(20,60,27)(21,61,28)(22,62,29)(23,63,30)(24,64,31), (2,12)(3,23)(4,10)(5,21)(6,8)(7,19)(9,17)(11,15)(14,24)(16,22)(18,20)(25,60)(26,71)(27,58)(28,69)(29,56)(30,67)(31,54)(32,65)(33,52)(34,63)(35,50)(36,61)(37,72)(38,59)(39,70)(40,57)(41,68)(42,55)(43,66)(44,53)(45,64)(46,51)(47,62)(48,49) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,65,32),(2,66,33),(3,67,34),(4,68,35),(5,69,36),(6,70,37),(7,71,38),(8,72,39),(9,49,40),(10,50,41),(11,51,42),(12,52,43),(13,53,44),(14,54,45),(15,55,46),(16,56,47),(17,57,48),(18,58,25),(19,59,26),(20,60,27),(21,61,28),(22,62,29),(23,63,30),(24,64,31)], [(2,12),(3,23),(4,10),(5,21),(6,8),(7,19),(9,17),(11,15),(14,24),(16,22),(18,20),(25,60),(26,71),(27,58),(28,69),(29,56),(30,67),(31,54),(32,65),(33,52),(34,63),(35,50),(36,61),(37,72),(38,59),(39,70),(40,57),(41,68),(42,55),(43,66),(44,53),(45,64),(46,51),(47,62),(48,49)]])

C242S3 is a maximal subgroup of
S3×C24⋊C2  D24⋊S3  Dic12⋊S3  D6.1D12  C24.78D6  C243D6  C24.5D6  C248D6  SD16×C3⋊S3  C24.40D6  C24.35D6  He36SD16  C24⋊D9  C3316SD16  C3317SD16  C3321SD16
C242S3 is a maximal quotient of
C6.4Dic12  C242Dic3  C62.84D4  C24⋊D9  He37SD16  C3316SD16  C3317SD16  C3321SD16

39 conjugacy classes

class 1 2A2B3A3B3C3D4A4B6A6B6C6D8A8B12A···12H24A···24P
order12233334466668812···1224···24
size113622222362222222···22···2

39 irreducible representations

dim1111222222
type++++++++
imageC1C2C2C2S3D4D6SD16D12C24⋊C2
kernelC242S3C3×C24C324Q8C12⋊S3C24C3×C6C12C32C6C3
# reps11114142816

Matrix representation of C242S3 in GL4(𝔽73) generated by

624800
253700
003748
002562
,
1000
0100
0001
007272
,
0100
1000
00072
00720
G:=sub<GL(4,GF(73))| [62,25,0,0,48,37,0,0,0,0,37,25,0,0,48,62],[1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,72],[0,1,0,0,1,0,0,0,0,0,0,72,0,0,72,0] >;

C242S3 in GAP, Magma, Sage, TeX

C_{24}\rtimes_2S_3
% in TeX

G:=Group("C24:2S3");
// GroupNames label

G:=SmallGroup(144,87);
// by ID

G=gap.SmallGroup(144,87);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,31,218,50,964,3461]);
// Polycyclic

G:=Group<a,b,c|a^24=b^3=c^2=1,a*b=b*a,c*a*c=a^11,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽