Extensions 1→N→G→Q→1 with N=C12 and Q=Dic3

Direct product G=N×Q with N=C12 and Q=Dic3
dρLabelID
Dic3×C1248Dic3xC12144,76

Semidirect products G=N:Q with N=C12 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C121Dic3 = C12⋊Dic3φ: Dic3/C6C2 ⊆ Aut C12144C12:1Dic3144,94
C122Dic3 = C4×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C12144C12:2Dic3144,92
C123Dic3 = C3×C4⋊Dic3φ: Dic3/C6C2 ⊆ Aut C1248C12:3Dic3144,78

Non-split extensions G=N.Q with N=C12 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C12.1Dic3 = C4.Dic9φ: Dic3/C6C2 ⊆ Aut C12722C12.1Dic3144,10
C12.2Dic3 = C4⋊Dic9φ: Dic3/C6C2 ⊆ Aut C12144C12.2Dic3144,13
C12.3Dic3 = C12.58D6φ: Dic3/C6C2 ⊆ Aut C1272C12.3Dic3144,91
C12.4Dic3 = C9⋊C16φ: Dic3/C6C2 ⊆ Aut C121442C12.4Dic3144,1
C12.5Dic3 = C2×C9⋊C8φ: Dic3/C6C2 ⊆ Aut C12144C12.5Dic3144,9
C12.6Dic3 = C4×Dic9φ: Dic3/C6C2 ⊆ Aut C12144C12.6Dic3144,11
C12.7Dic3 = C24.S3φ: Dic3/C6C2 ⊆ Aut C12144C12.7Dic3144,29
C12.8Dic3 = C2×C324C8φ: Dic3/C6C2 ⊆ Aut C12144C12.8Dic3144,90
C12.9Dic3 = C3×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C12242C12.9Dic3144,75
C12.10Dic3 = C3×C3⋊C16central extension (φ=1)482C12.10Dic3144,28
C12.11Dic3 = C6×C3⋊C8central extension (φ=1)48C12.11Dic3144,74

׿
×
𝔽