extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1Dic3 = C4.Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 72 | 2 | C12.1Dic3 | 144,10 |
C12.2Dic3 = C4⋊Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 144 | | C12.2Dic3 | 144,13 |
C12.3Dic3 = C12.58D6 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 72 | | C12.3Dic3 | 144,91 |
C12.4Dic3 = C9⋊C16 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 144 | 2 | C12.4Dic3 | 144,1 |
C12.5Dic3 = C2×C9⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 144 | | C12.5Dic3 | 144,9 |
C12.6Dic3 = C4×Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 144 | | C12.6Dic3 | 144,11 |
C12.7Dic3 = C24.S3 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 144 | | C12.7Dic3 | 144,29 |
C12.8Dic3 = C2×C32⋊4C8 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 144 | | C12.8Dic3 | 144,90 |
C12.9Dic3 = C3×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C12 | 24 | 2 | C12.9Dic3 | 144,75 |
C12.10Dic3 = C3×C3⋊C16 | central extension (φ=1) | 48 | 2 | C12.10Dic3 | 144,28 |
C12.11Dic3 = C6×C3⋊C8 | central extension (φ=1) | 48 | | C12.11Dic3 | 144,74 |