Copied to
clipboard

G = C9⋊C16order 144 = 24·32

The semidirect product of C9 and C16 acting via C16/C8=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C9⋊C16, C18.C8, C8.2D9, C36.2C4, C72.2C2, C24.6S3, C4.2Dic9, C12.4Dic3, C2.(C9⋊C8), C3.(C3⋊C16), C6.1(C3⋊C8), SmallGroup(144,1)

Series: Derived Chief Lower central Upper central

C1C9 — C9⋊C16
C1C3C9C18C36C72 — C9⋊C16
C9 — C9⋊C16
C1C8

Generators and relations for C9⋊C16
 G = < a,b | a9=b16=1, bab-1=a-1 >

9C16
3C3⋊C16

Smallest permutation representation of C9⋊C16
Regular action on 144 points
Generators in S144
(1 92 136 61 114 107 77 23 48)(2 33 24 78 108 115 62 137 93)(3 94 138 63 116 109 79 25 34)(4 35 26 80 110 117 64 139 95)(5 96 140 49 118 111 65 27 36)(6 37 28 66 112 119 50 141 81)(7 82 142 51 120 97 67 29 38)(8 39 30 68 98 121 52 143 83)(9 84 144 53 122 99 69 31 40)(10 41 32 70 100 123 54 129 85)(11 86 130 55 124 101 71 17 42)(12 43 18 72 102 125 56 131 87)(13 88 132 57 126 103 73 19 44)(14 45 20 74 104 127 58 133 89)(15 90 134 59 128 105 75 21 46)(16 47 22 76 106 113 60 135 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,92,136,61,114,107,77,23,48)(2,33,24,78,108,115,62,137,93)(3,94,138,63,116,109,79,25,34)(4,35,26,80,110,117,64,139,95)(5,96,140,49,118,111,65,27,36)(6,37,28,66,112,119,50,141,81)(7,82,142,51,120,97,67,29,38)(8,39,30,68,98,121,52,143,83)(9,84,144,53,122,99,69,31,40)(10,41,32,70,100,123,54,129,85)(11,86,130,55,124,101,71,17,42)(12,43,18,72,102,125,56,131,87)(13,88,132,57,126,103,73,19,44)(14,45,20,74,104,127,58,133,89)(15,90,134,59,128,105,75,21,46)(16,47,22,76,106,113,60,135,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)>;

G:=Group( (1,92,136,61,114,107,77,23,48)(2,33,24,78,108,115,62,137,93)(3,94,138,63,116,109,79,25,34)(4,35,26,80,110,117,64,139,95)(5,96,140,49,118,111,65,27,36)(6,37,28,66,112,119,50,141,81)(7,82,142,51,120,97,67,29,38)(8,39,30,68,98,121,52,143,83)(9,84,144,53,122,99,69,31,40)(10,41,32,70,100,123,54,129,85)(11,86,130,55,124,101,71,17,42)(12,43,18,72,102,125,56,131,87)(13,88,132,57,126,103,73,19,44)(14,45,20,74,104,127,58,133,89)(15,90,134,59,128,105,75,21,46)(16,47,22,76,106,113,60,135,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,92,136,61,114,107,77,23,48),(2,33,24,78,108,115,62,137,93),(3,94,138,63,116,109,79,25,34),(4,35,26,80,110,117,64,139,95),(5,96,140,49,118,111,65,27,36),(6,37,28,66,112,119,50,141,81),(7,82,142,51,120,97,67,29,38),(8,39,30,68,98,121,52,143,83),(9,84,144,53,122,99,69,31,40),(10,41,32,70,100,123,54,129,85),(11,86,130,55,124,101,71,17,42),(12,43,18,72,102,125,56,131,87),(13,88,132,57,126,103,73,19,44),(14,45,20,74,104,127,58,133,89),(15,90,134,59,128,105,75,21,46),(16,47,22,76,106,113,60,135,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)]])

C9⋊C16 is a maximal subgroup of
C16×D9  C16⋊D9  C36.C8  C9⋊D16  D8.D9  C9⋊SD32  C9⋊Q32  C27⋊C16  C9⋊C48  C72.S3
C9⋊C16 is a maximal quotient of
C9⋊C32  C27⋊C16  C72.S3

48 conjugacy classes

class 1  2  3 4A4B 6 8A8B8C8D9A9B9C12A12B16A···16H18A18B18C24A24B24C24D36A···36F72A···72L
order1234468888999121216···161818182424242436···3672···72
size1121121111222229···922222222···22···2

48 irreducible representations

dim1111122222222
type+++-+-
imageC1C2C4C8C16S3Dic3D9C3⋊C8Dic9C3⋊C16C9⋊C8C9⋊C16
kernelC9⋊C16C72C36C18C9C24C12C8C6C4C3C2C1
# reps11248113234612

Matrix representation of C9⋊C16 in GL2(𝔽17) generated by

614
78
,
72
010
G:=sub<GL(2,GF(17))| [6,7,14,8],[7,0,2,10] >;

C9⋊C16 in GAP, Magma, Sage, TeX

C_9\rtimes C_{16}
% in TeX

G:=Group("C9:C16");
// GroupNames label

G:=SmallGroup(144,1);
// by ID

G=gap.SmallGroup(144,1);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,12,31,50,2404,208,3461]);
// Polycyclic

G:=Group<a,b|a^9=b^16=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C9⋊C16 in TeX

׿
×
𝔽