Extensions 1→N→G→Q→1 with N=C2xDic9 and Q=C2

Direct product G=NxQ with N=C2xDic9 and Q=C2
dρLabelID
C22xDic9144C2^2xDic9144,45

Semidirect products G=N:Q with N=C2xDic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic9):1C2 = D18:C4φ: C2/C1C2 ⊆ Out C2xDic972(C2xDic9):1C2144,14
(C2xDic9):2C2 = C18.D4φ: C2/C1C2 ⊆ Out C2xDic972(C2xDic9):2C2144,19
(C2xDic9):3C2 = D4:2D9φ: C2/C1C2 ⊆ Out C2xDic9724-(C2xDic9):3C2144,42
(C2xDic9):4C2 = C2xC9:D4φ: C2/C1C2 ⊆ Out C2xDic972(C2xDic9):4C2144,46
(C2xDic9):5C2 = C2xC4xD9φ: trivial image72(C2xDic9):5C2144,38

Non-split extensions G=N.Q with N=C2xDic9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xDic9).1C2 = Dic9:C4φ: C2/C1C2 ⊆ Out C2xDic9144(C2xDic9).1C2144,12
(C2xDic9).2C2 = C4:Dic9φ: C2/C1C2 ⊆ Out C2xDic9144(C2xDic9).2C2144,13
(C2xDic9).3C2 = C2xDic18φ: C2/C1C2 ⊆ Out C2xDic9144(C2xDic9).3C2144,37
(C2xDic9).4C2 = C4xDic9φ: trivial image144(C2xDic9).4C2144,11

׿
x
:
Z
F
o
wr
Q
<