metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊2D9, C12.6D6, C4.5D18, Dic18⋊3C2, C36.5C22, C18.6C23, C22.1D18, D18.2C22, Dic9.3C22, (D4×C9)⋊3C2, (C4×D9)⋊2C2, C9⋊2(C4○D4), C9⋊D4⋊2C2, (C2×C6).3D6, (C3×D4).4S3, (C2×C18).C22, C3.(D4⋊2S3), (C2×Dic9)⋊3C2, C2.7(C22×D9), C6.24(C22×S3), SmallGroup(144,42)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊2D9
G = < a,b,c,d | a4=b2=c9=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >
Subgroups: 199 in 60 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, Q8, C9, Dic3, C12, D6, C2×C6, C4○D4, D9, C18, C18, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, Dic9, Dic9, C36, D18, C2×C18, D4⋊2S3, Dic18, C4×D9, C2×Dic9, C9⋊D4, D4×C9, D4⋊2D9
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, D9, C22×S3, D18, D4⋊2S3, C22×D9, D4⋊2D9
Character table of D4⋊2D9
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 9A | 9B | 9C | 12 | 18A | 18B | 18C | 18D | 18E | 18F | 18G | 18H | 18I | 36A | 36B | 36C | |
size | 1 | 1 | 2 | 2 | 18 | 2 | 2 | 9 | 9 | 18 | 18 | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 2 | -2 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -1 | -1 | -1 | -2 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ15 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ95+ζ94 | ζ98+ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ17 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ18 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ19 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ20 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ97+ζ92 | ζ95+ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ21 | 2 | 2 | 2 | 2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ22 | 2 | 2 | -2 | 2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ98+ζ9 | ζ97+ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ23 | 2 | 2 | 2 | -2 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ24 | 2 | 2 | -2 | -2 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ25 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | 2i | -2i | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | 0 | 0 | 0 | 2 | 0 | -2i | 2i | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | -2 | -2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 0 | -2ζ97-2ζ92 | -2ζ98-2ζ9 | -2ζ95-2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 0 | -2ζ95-2ζ94 | -2ζ97-2ζ92 | -2ζ98-2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 0 | -2ζ98-2ζ9 | -2ζ95-2ζ94 | -2ζ97-2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 50 14 41)(2 51 15 42)(3 52 16 43)(4 53 17 44)(5 54 18 45)(6 46 10 37)(7 47 11 38)(8 48 12 39)(9 49 13 40)(19 64 28 55)(20 65 29 56)(21 66 30 57)(22 67 31 58)(23 68 32 59)(24 69 33 60)(25 70 34 61)(26 71 35 62)(27 72 36 63)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 55)(7 56)(8 57)(9 58)(10 64)(11 65)(12 66)(13 67)(14 68)(15 69)(16 70)(17 71)(18 72)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 49)(32 50)(33 51)(34 52)(35 53)(36 54)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 9)(2 8)(3 7)(4 6)(10 17)(11 16)(12 15)(13 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 44)(38 43)(39 42)(40 41)(46 53)(47 52)(48 51)(49 50)(55 71)(56 70)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(63 72)
G:=sub<Sym(72)| (1,50,14,41)(2,51,15,42)(3,52,16,43)(4,53,17,44)(5,54,18,45)(6,46,10,37)(7,47,11,38)(8,48,12,39)(9,49,13,40)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63), (1,59)(2,60)(3,61)(4,62)(5,63)(6,55)(7,56)(8,57)(9,58)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,44)(38,43)(39,42)(40,41)(46,53)(47,52)(48,51)(49,50)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)>;
G:=Group( (1,50,14,41)(2,51,15,42)(3,52,16,43)(4,53,17,44)(5,54,18,45)(6,46,10,37)(7,47,11,38)(8,48,12,39)(9,49,13,40)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63), (1,59)(2,60)(3,61)(4,62)(5,63)(6,55)(7,56)(8,57)(9,58)(10,64)(11,65)(12,66)(13,67)(14,68)(15,69)(16,70)(17,71)(18,72)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,49)(32,50)(33,51)(34,52)(35,53)(36,54), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,9)(2,8)(3,7)(4,6)(10,17)(11,16)(12,15)(13,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,44)(38,43)(39,42)(40,41)(46,53)(47,52)(48,51)(49,50)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72) );
G=PermutationGroup([[(1,50,14,41),(2,51,15,42),(3,52,16,43),(4,53,17,44),(5,54,18,45),(6,46,10,37),(7,47,11,38),(8,48,12,39),(9,49,13,40),(19,64,28,55),(20,65,29,56),(21,66,30,57),(22,67,31,58),(23,68,32,59),(24,69,33,60),(25,70,34,61),(26,71,35,62),(27,72,36,63)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,55),(7,56),(8,57),(9,58),(10,64),(11,65),(12,66),(13,67),(14,68),(15,69),(16,70),(17,71),(18,72),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,49),(32,50),(33,51),(34,52),(35,53),(36,54)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,9),(2,8),(3,7),(4,6),(10,17),(11,16),(12,15),(13,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,44),(38,43),(39,42),(40,41),(46,53),(47,52),(48,51),(49,50),(55,71),(56,70),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(63,72)]])
D4⋊2D9 is a maximal subgroup of
D8⋊D9 D8⋊3D9 SD16⋊D9 SD16⋊3D9 D4⋊6D18 C4○D4×D9 D4.10D18 D4⋊2D27 D12⋊5D9 D12⋊D9 Dic3.D18 D18.4D6 Dic18⋊2C6 C36.27D6
D4⋊2D9 is a maximal quotient of
C23.16D18 C22⋊2Dic18 C23.8D18 Dic9⋊4D4 C23.9D18 Dic9.D4 C22.4D36 Dic9⋊3Q8 Dic9.Q8 C36.3Q8 C4⋊C4⋊7D9 D18⋊2Q8 C4⋊C4⋊D9 D4×Dic9 C23.23D18 C36.17D4 C36⋊2D4 Dic9⋊D4 D4⋊2D27 D12⋊5D9 D12⋊D9 Dic3.D18 D18.4D6 C36.27D6
Matrix representation of D4⋊2D9 ►in GL4(𝔽37) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 31 | 0 |
0 | 0 | 0 | 6 |
36 | 0 | 0 | 0 |
0 | 36 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 31 | 0 |
20 | 6 | 0 | 0 |
31 | 26 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
17 | 26 | 0 | 0 |
6 | 20 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 36 |
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,31,0,0,0,0,6],[36,0,0,0,0,36,0,0,0,0,0,31,0,0,6,0],[20,31,0,0,6,26,0,0,0,0,1,0,0,0,0,1],[17,6,0,0,26,20,0,0,0,0,1,0,0,0,0,36] >;
D4⋊2D9 in GAP, Magma, Sage, TeX
D_4\rtimes_2D_9
% in TeX
G:=Group("D4:2D9");
// GroupNames label
G:=SmallGroup(144,42);
// by ID
G=gap.SmallGroup(144,42);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,116,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations
Export