Copied to
clipboard

G = C6×3- 1+2order 162 = 2·34

Direct product of C6 and 3- 1+2

direct product, metabelian, nilpotent (class 2), monomial, 3-elementary

Aliases: C6×3- 1+2, C18⋊C32, C6.2C33, C33.4C6, C92(C3×C6), (C3×C9)⋊11C6, (C3×C18)⋊4C3, C3.2(C32×C6), (C3×C6).8C32, (C32×C6).2C3, C32.11(C3×C6), SmallGroup(162,49)

Series: Derived Chief Lower central Upper central

C1C3 — C6×3- 1+2
C1C3C32C33C3×3- 1+2 — C6×3- 1+2
C1C3 — C6×3- 1+2
C1C3×C6 — C6×3- 1+2

Generators and relations for C6×3- 1+2
 G = < a,b,c | a6=b9=c3=1, ab=ba, ac=ca, cbc-1=b4 >

Subgroups: 100 in 76 conjugacy classes, 64 normal (10 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, 3- 1+2, C33, C3×C18, C2×3- 1+2, C32×C6, C3×3- 1+2, C6×3- 1+2
Quotients: C1, C2, C3, C6, C32, C3×C6, 3- 1+2, C33, C2×3- 1+2, C32×C6, C3×3- 1+2, C6×3- 1+2

Smallest permutation representation of C6×3- 1+2
On 54 points
Generators in S54
(1 21 36 15 37 48)(2 22 28 16 38 49)(3 23 29 17 39 50)(4 24 30 18 40 51)(5 25 31 10 41 52)(6 26 32 11 42 53)(7 27 33 12 43 54)(8 19 34 13 44 46)(9 20 35 14 45 47)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 30 43)(2 28 38)(3 35 42)(4 33 37)(5 31 41)(6 29 45)(7 36 40)(8 34 44)(9 32 39)(10 52 25)(11 50 20)(12 48 24)(13 46 19)(14 53 23)(15 51 27)(16 49 22)(17 47 26)(18 54 21)

G:=sub<Sym(54)| (1,21,36,15,37,48)(2,22,28,16,38,49)(3,23,29,17,39,50)(4,24,30,18,40,51)(5,25,31,10,41,52)(6,26,32,11,42,53)(7,27,33,12,43,54)(8,19,34,13,44,46)(9,20,35,14,45,47), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,30,43)(2,28,38)(3,35,42)(4,33,37)(5,31,41)(6,29,45)(7,36,40)(8,34,44)(9,32,39)(10,52,25)(11,50,20)(12,48,24)(13,46,19)(14,53,23)(15,51,27)(16,49,22)(17,47,26)(18,54,21)>;

G:=Group( (1,21,36,15,37,48)(2,22,28,16,38,49)(3,23,29,17,39,50)(4,24,30,18,40,51)(5,25,31,10,41,52)(6,26,32,11,42,53)(7,27,33,12,43,54)(8,19,34,13,44,46)(9,20,35,14,45,47), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,30,43)(2,28,38)(3,35,42)(4,33,37)(5,31,41)(6,29,45)(7,36,40)(8,34,44)(9,32,39)(10,52,25)(11,50,20)(12,48,24)(13,46,19)(14,53,23)(15,51,27)(16,49,22)(17,47,26)(18,54,21) );

G=PermutationGroup([[(1,21,36,15,37,48),(2,22,28,16,38,49),(3,23,29,17,39,50),(4,24,30,18,40,51),(5,25,31,10,41,52),(6,26,32,11,42,53),(7,27,33,12,43,54),(8,19,34,13,44,46),(9,20,35,14,45,47)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,30,43),(2,28,38),(3,35,42),(4,33,37),(5,31,41),(6,29,45),(7,36,40),(8,34,44),(9,32,39),(10,52,25),(11,50,20),(12,48,24),(13,46,19),(14,53,23),(15,51,27),(16,49,22),(17,47,26),(18,54,21)]])

C6×3- 1+2 is a maximal subgroup of   C33.Dic3

66 conjugacy classes

class 1  2 3A···3H3I···3N6A···6H6I···6N9A···9R18A···18R
order123···33···36···66···69···918···18
size111···13···31···13···33···33···3

66 irreducible representations

dim1111111133
type++
imageC1C2C3C3C3C6C6C63- 1+2C2×3- 1+2
kernelC6×3- 1+2C3×3- 1+2C3×C18C2×3- 1+2C32×C6C3×C93- 1+2C33C6C3
# reps116182618266

Matrix representation of C6×3- 1+2 in GL4(𝔽19) generated by

8000
0800
0080
0008
,
7000
01018
00011
013818
,
1000
011127
0010
0007
G:=sub<GL(4,GF(19))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[7,0,0,0,0,1,0,13,0,0,0,8,0,18,11,18],[1,0,0,0,0,11,0,0,0,12,1,0,0,7,0,7] >;

C6×3- 1+2 in GAP, Magma, Sage, TeX

C_6\times 3_-^{1+2}
% in TeX

G:=Group("C6xES-(3,1)");
// GroupNames label

G:=SmallGroup(162,49);
// by ID

G=gap.SmallGroup(162,49);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-3,276,457]);
// Polycyclic

G:=Group<a,b,c|a^6=b^9=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

׿
×
𝔽