Copied to
clipboard

G = Dic5.D4order 160 = 25·5

1st non-split extension by Dic5 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic5.1D4, (C2×C4).F5, (C2×C20).1C4, C5⋊(C4.10D4), C22.F5.C2, C22.3(C2×F5), (C2×Dic5).2C4, C2.5(C22⋊F5), C10.3(C22⋊C4), (C2×Dic10).2C2, (C2×Dic5).23C22, (C2×C10).8(C2×C4), SmallGroup(160,80)

Series: Derived Chief Lower central Upper central

C1C2×C10 — Dic5.D4
C1C5C10Dic5C2×Dic5C22.F5 — Dic5.D4
C5C10C2×C10 — Dic5.D4
C1C2C22C2×C4

Generators and relations for Dic5.D4
 G = < a,b,c,d | a10=1, b2=c4=a5, d2=b, bab-1=a-1, cac-1=dad-1=a3, cbc-1=a5b, bd=db, dcd-1=bc3 >

2C2
2C4
5C4
5C4
10C4
2C10
5C2×C4
5C2×C4
10C8
10C8
10Q8
10Q8
2Dic5
2C20
5C2×Q8
5M4(2)
5M4(2)
2C5⋊C8
2Dic10
2Dic10
2C5⋊C8
5C4.10D4

Character table of Dic5.D4

 class 12A2B4A4B4C4D58A8B8C8D10A10B10C20A20B20C20D
 size 11241010204202020204444444
ρ11111111111111111111    trivial
ρ2111-111-111-11-1111-1-1-1-1    linear of order 2
ρ3111-111-11-11-11111-1-1-1-1    linear of order 2
ρ411111111-1-1-1-11111111    linear of order 2
ρ51111-1-1-11-i-iii1111111    linear of order 4
ρ6111-1-1-111i-i-ii111-1-1-1-1    linear of order 4
ρ71111-1-1-11ii-i-i1111111    linear of order 4
ρ8111-1-1-111-iii-i111-1-1-1-1    linear of order 4
ρ922-20-220200002-2-20000    orthogonal lifted from D4
ρ1022-202-20200002-2-20000    orthogonal lifted from D4
ρ1144-40000-10000-1115-5-55    orthogonal lifted from C22⋊F5
ρ12444-4000-10000-1-1-11111    orthogonal lifted from C2×F5
ρ134444000-10000-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ1444-40000-10000-111-555-5    orthogonal lifted from C22⋊F5
ρ154-40000040000-4000000    symplectic lifted from C4.10D4, Schur index 2
ρ164-400000-100001-554ζ54+2ζ4ζ53443ζ53+2ζ43ζ54343ζ54+2ζ43ζ52434ζ52+2ζ4ζ54    symplectic faithful, Schur index 2
ρ174-400000-1000015-543ζ53+2ζ43ζ5434ζ52+2ζ4ζ544ζ54+2ζ4ζ53443ζ54+2ζ43ζ5243    symplectic faithful, Schur index 2
ρ184-400000-1000015-543ζ54+2ζ43ζ52434ζ54+2ζ4ζ5344ζ52+2ζ4ζ5443ζ53+2ζ43ζ543    symplectic faithful, Schur index 2
ρ194-400000-100001-554ζ52+2ζ4ζ5443ζ54+2ζ43ζ524343ζ53+2ζ43ζ5434ζ54+2ζ4ζ534    symplectic faithful, Schur index 2

Smallest permutation representation of Dic5.D4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 16 6 11)(2 15 7 20)(3 14 8 19)(4 13 9 18)(5 12 10 17)(21 39 26 34)(22 38 27 33)(23 37 28 32)(24 36 29 31)(25 35 30 40)(41 54 46 59)(42 53 47 58)(43 52 48 57)(44 51 49 56)(45 60 50 55)(61 79 66 74)(62 78 67 73)(63 77 68 72)(64 76 69 71)(65 75 70 80)
(1 73 11 62 6 78 16 67)(2 80 20 65 7 75 15 70)(3 77 19 68 8 72 14 63)(4 74 18 61 9 79 13 66)(5 71 17 64 10 76 12 69)(21 57 34 43 26 52 39 48)(22 54 33 46 27 59 38 41)(23 51 32 49 28 56 37 44)(24 58 31 42 29 53 36 47)(25 55 40 45 30 60 35 50)
(1 58 16 42 6 53 11 47)(2 55 15 45 7 60 20 50)(3 52 14 48 8 57 19 43)(4 59 13 41 9 54 18 46)(5 56 12 44 10 51 17 49)(21 77 39 68 26 72 34 63)(22 74 38 61 27 79 33 66)(23 71 37 64 28 76 32 69)(24 78 36 67 29 73 31 62)(25 75 35 70 30 80 40 65)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,16,6,11)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(41,54,46,59)(42,53,47,58)(43,52,48,57)(44,51,49,56)(45,60,50,55)(61,79,66,74)(62,78,67,73)(63,77,68,72)(64,76,69,71)(65,75,70,80), (1,73,11,62,6,78,16,67)(2,80,20,65,7,75,15,70)(3,77,19,68,8,72,14,63)(4,74,18,61,9,79,13,66)(5,71,17,64,10,76,12,69)(21,57,34,43,26,52,39,48)(22,54,33,46,27,59,38,41)(23,51,32,49,28,56,37,44)(24,58,31,42,29,53,36,47)(25,55,40,45,30,60,35,50), (1,58,16,42,6,53,11,47)(2,55,15,45,7,60,20,50)(3,52,14,48,8,57,19,43)(4,59,13,41,9,54,18,46)(5,56,12,44,10,51,17,49)(21,77,39,68,26,72,34,63)(22,74,38,61,27,79,33,66)(23,71,37,64,28,76,32,69)(24,78,36,67,29,73,31,62)(25,75,35,70,30,80,40,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,16,6,11)(2,15,7,20)(3,14,8,19)(4,13,9,18)(5,12,10,17)(21,39,26,34)(22,38,27,33)(23,37,28,32)(24,36,29,31)(25,35,30,40)(41,54,46,59)(42,53,47,58)(43,52,48,57)(44,51,49,56)(45,60,50,55)(61,79,66,74)(62,78,67,73)(63,77,68,72)(64,76,69,71)(65,75,70,80), (1,73,11,62,6,78,16,67)(2,80,20,65,7,75,15,70)(3,77,19,68,8,72,14,63)(4,74,18,61,9,79,13,66)(5,71,17,64,10,76,12,69)(21,57,34,43,26,52,39,48)(22,54,33,46,27,59,38,41)(23,51,32,49,28,56,37,44)(24,58,31,42,29,53,36,47)(25,55,40,45,30,60,35,50), (1,58,16,42,6,53,11,47)(2,55,15,45,7,60,20,50)(3,52,14,48,8,57,19,43)(4,59,13,41,9,54,18,46)(5,56,12,44,10,51,17,49)(21,77,39,68,26,72,34,63)(22,74,38,61,27,79,33,66)(23,71,37,64,28,76,32,69)(24,78,36,67,29,73,31,62)(25,75,35,70,30,80,40,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,16,6,11),(2,15,7,20),(3,14,8,19),(4,13,9,18),(5,12,10,17),(21,39,26,34),(22,38,27,33),(23,37,28,32),(24,36,29,31),(25,35,30,40),(41,54,46,59),(42,53,47,58),(43,52,48,57),(44,51,49,56),(45,60,50,55),(61,79,66,74),(62,78,67,73),(63,77,68,72),(64,76,69,71),(65,75,70,80)], [(1,73,11,62,6,78,16,67),(2,80,20,65,7,75,15,70),(3,77,19,68,8,72,14,63),(4,74,18,61,9,79,13,66),(5,71,17,64,10,76,12,69),(21,57,34,43,26,52,39,48),(22,54,33,46,27,59,38,41),(23,51,32,49,28,56,37,44),(24,58,31,42,29,53,36,47),(25,55,40,45,30,60,35,50)], [(1,58,16,42,6,53,11,47),(2,55,15,45,7,60,20,50),(3,52,14,48,8,57,19,43),(4,59,13,41,9,54,18,46),(5,56,12,44,10,51,17,49),(21,77,39,68,26,72,34,63),(22,74,38,61,27,79,33,66),(23,71,37,64,28,76,32,69),(24,78,36,67,29,73,31,62),(25,75,35,70,30,80,40,65)]])

Dic5.D4 is a maximal subgroup of
C42.F5  C42.2F5  (D4×C10).C4  (Q8×C10).C4  (C4×D5).D4  (C2×D4).9F5  (C2×Q8).7F5  Dic5.4D12  (C2×C60).C4
Dic5.D4 is a maximal quotient of
C10.C4≀C2  Dic5.D8  (C2×C20)⋊1C8  (C22×C4).F5  C22.F5⋊C4  Dic5.4D12  (C2×C60).C4

Matrix representation of Dic5.D4 in GL8(𝔽41)

341000000
400000000
210010000
2104060000
000040000
000004000
000000400
000000040
,
1521000000
326000000
22825160000
0262160000
000003700
000031000
0000424121
000021253740
,
31352610000
271332140000
2193720000
25372310000
00001037722
000030263121
000033382411
00003717622
,
10615400000
14289270000
39224390000
16418400000
000020370
0000426121
000011390
00000402515

G:=sub<GL(8,GF(41))| [34,40,21,21,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[15,3,2,0,0,0,0,0,21,26,28,26,0,0,0,0,0,0,25,2,0,0,0,0,0,0,16,16,0,0,0,0,0,0,0,0,0,31,4,21,0,0,0,0,37,0,24,25,0,0,0,0,0,0,1,37,0,0,0,0,0,0,21,40],[31,27,2,25,0,0,0,0,35,13,19,37,0,0,0,0,26,32,37,23,0,0,0,0,1,14,2,1,0,0,0,0,0,0,0,0,10,30,33,37,0,0,0,0,37,26,38,17,0,0,0,0,7,31,24,6,0,0,0,0,22,21,11,22],[10,14,39,16,0,0,0,0,6,28,22,4,0,0,0,0,15,9,4,18,0,0,0,0,40,27,39,40,0,0,0,0,0,0,0,0,2,4,1,0,0,0,0,0,0,26,1,40,0,0,0,0,37,1,39,25,0,0,0,0,0,21,0,15] >;

Dic5.D4 in GAP, Magma, Sage, TeX

{\rm Dic}_5.D_4
% in TeX

G:=Group("Dic5.D4");
// GroupNames label

G:=SmallGroup(160,80);
// by ID

G=gap.SmallGroup(160,80);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,121,103,188,86,579,2309,1169]);
// Polycyclic

G:=Group<a,b,c,d|a^10=1,b^2=c^4=a^5,d^2=b,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=b*c^3>;
// generators/relations

Export

Subgroup lattice of Dic5.D4 in TeX
Character table of Dic5.D4 in TeX

׿
×
𝔽