extension | φ:Q→Aut N | d | ρ | Label | ID |
C10.1(C4○D4) = C4×Dic10 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 160 | | C10.1(C4oD4) | 160,89 |
C10.2(C4○D4) = C20.6Q8 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 160 | | C10.2(C4oD4) | 160,91 |
C10.3(C4○D4) = C42⋊D5 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.3(C4oD4) | 160,93 |
C10.4(C4○D4) = C4×D20 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.4(C4oD4) | 160,94 |
C10.5(C4○D4) = C4.D20 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.5(C4oD4) | 160,96 |
C10.6(C4○D4) = C42⋊2D5 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.6(C4oD4) | 160,97 |
C10.7(C4○D4) = C23.D10 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.7(C4oD4) | 160,100 |
C10.8(C4○D4) = D10.12D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.8(C4oD4) | 160,104 |
C10.9(C4○D4) = D10⋊D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.9(C4oD4) | 160,105 |
C10.10(C4○D4) = Dic5.5D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.10(C4oD4) | 160,106 |
C10.11(C4○D4) = Dic5.Q8 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 160 | | C10.11(C4oD4) | 160,110 |
C10.12(C4○D4) = D10.13D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.12(C4oD4) | 160,115 |
C10.13(C4○D4) = D10⋊Q8 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.13(C4oD4) | 160,117 |
C10.14(C4○D4) = C4⋊C4⋊D5 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.14(C4oD4) | 160,119 |
C10.15(C4○D4) = C20.48D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.15(C4oD4) | 160,145 |
C10.16(C4○D4) = C23.21D10 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.16(C4oD4) | 160,147 |
C10.17(C4○D4) = C4×C5⋊D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.17(C4oD4) | 160,149 |
C10.18(C4○D4) = C23.23D10 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.18(C4oD4) | 160,150 |
C10.19(C4○D4) = C20⋊7D4 | φ: C4○D4/C2×C4 → C2 ⊆ Aut C10 | 80 | | C10.19(C4oD4) | 160,151 |
C10.20(C4○D4) = C23.11D10 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.20(C4oD4) | 160,98 |
C10.21(C4○D4) = Dic5.14D4 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.21(C4oD4) | 160,99 |
C10.22(C4○D4) = Dic5⋊4D4 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.22(C4oD4) | 160,102 |
C10.23(C4○D4) = C22.D20 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.23(C4oD4) | 160,107 |
C10.24(C4○D4) = Dic5⋊3Q8 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 160 | | C10.24(C4oD4) | 160,108 |
C10.25(C4○D4) = C4.Dic10 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 160 | | C10.25(C4oD4) | 160,111 |
C10.26(C4○D4) = C4⋊C4⋊7D5 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.26(C4oD4) | 160,113 |
C10.27(C4○D4) = D10⋊2Q8 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.27(C4oD4) | 160,118 |
C10.28(C4○D4) = D4×Dic5 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.28(C4oD4) | 160,155 |
C10.29(C4○D4) = C23.18D10 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.29(C4oD4) | 160,156 |
C10.30(C4○D4) = C20.17D4 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.30(C4oD4) | 160,157 |
C10.31(C4○D4) = C20⋊2D4 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.31(C4oD4) | 160,159 |
C10.32(C4○D4) = Dic5⋊D4 | φ: C4○D4/D4 → C2 ⊆ Aut C10 | 80 | | C10.32(C4oD4) | 160,160 |
C10.33(C4○D4) = D20⋊8C4 | φ: C4○D4/Q8 → C2 ⊆ Aut C10 | 80 | | C10.33(C4oD4) | 160,114 |
C10.34(C4○D4) = C4⋊D20 | φ: C4○D4/Q8 → C2 ⊆ Aut C10 | 80 | | C10.34(C4oD4) | 160,116 |
C10.35(C4○D4) = Q8×Dic5 | φ: C4○D4/Q8 → C2 ⊆ Aut C10 | 160 | | C10.35(C4oD4) | 160,166 |
C10.36(C4○D4) = D10⋊3Q8 | φ: C4○D4/Q8 → C2 ⊆ Aut C10 | 80 | | C10.36(C4oD4) | 160,167 |
C10.37(C4○D4) = C20.23D4 | φ: C4○D4/Q8 → C2 ⊆ Aut C10 | 80 | | C10.37(C4oD4) | 160,168 |
C10.38(C4○D4) = C5×C42⋊C2 | central extension (φ=1) | 80 | | C10.38(C4oD4) | 160,178 |
C10.39(C4○D4) = D4×C20 | central extension (φ=1) | 80 | | C10.39(C4oD4) | 160,179 |
C10.40(C4○D4) = Q8×C20 | central extension (φ=1) | 160 | | C10.40(C4oD4) | 160,180 |
C10.41(C4○D4) = C5×C4⋊D4 | central extension (φ=1) | 80 | | C10.41(C4oD4) | 160,182 |
C10.42(C4○D4) = C5×C22⋊Q8 | central extension (φ=1) | 80 | | C10.42(C4oD4) | 160,183 |
C10.43(C4○D4) = C5×C22.D4 | central extension (φ=1) | 80 | | C10.43(C4oD4) | 160,184 |
C10.44(C4○D4) = C5×C4.4D4 | central extension (φ=1) | 80 | | C10.44(C4oD4) | 160,185 |
C10.45(C4○D4) = C5×C42.C2 | central extension (φ=1) | 160 | | C10.45(C4oD4) | 160,186 |
C10.46(C4○D4) = C5×C42⋊2C2 | central extension (φ=1) | 80 | | C10.46(C4oD4) | 160,187 |