Copied to
clipboard

G = C4:D20order 160 = 25·5

The semidirect product of C4 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C20:1D4, C4:2D20, D10:2D4, C4:C4:3D5, (C2xD20):4C2, C5:2(C4:D4), C2.13(D4xD5), C2.9(C2xD20), C10.7(C2xD4), (C2xC4).12D10, D10:C4:8C2, (C2xC20).5C22, C10.34(C4oD4), (C2xC10).36C23, C2.6(Q8:2D5), (C22xD5).7C22, C22.50(C22xD5), (C2xDic5).34C22, (C2xC4xD5):1C2, (C5xC4:C4):6C2, SmallGroup(160,116)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C4:D20
C1C5C10C2xC10C22xD5C2xC4xD5 — C4:D20
C5C2xC10 — C4:D20
C1C22C4:C4

Generators and relations for C4:D20
 G = < a,b,c | a4=b20=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 384 in 94 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, C2xC4, D4, C23, D5, C10, C22:C4, C4:C4, C22xC4, C2xD4, Dic5, C20, C20, D10, D10, C2xC10, C4:D4, C4xD5, D20, C2xDic5, C2xC20, C2xC20, C22xD5, C22xD5, D10:C4, C5xC4:C4, C2xC4xD5, C2xD20, C2xD20, C4:D20
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C4oD4, D10, C4:D4, D20, C22xD5, C2xD20, D4xD5, Q8:2D5, C4:D20

Smallest permutation representation of C4:D20
On 80 points
Generators in S80
(1 71 41 26)(2 27 42 72)(3 73 43 28)(4 29 44 74)(5 75 45 30)(6 31 46 76)(7 77 47 32)(8 33 48 78)(9 79 49 34)(10 35 50 80)(11 61 51 36)(12 37 52 62)(13 63 53 38)(14 39 54 64)(15 65 55 40)(16 21 56 66)(17 67 57 22)(18 23 58 68)(19 69 59 24)(20 25 60 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 70)(22 69)(23 68)(24 67)(25 66)(26 65)(27 64)(28 63)(29 62)(30 61)(31 80)(32 79)(33 78)(34 77)(35 76)(36 75)(37 74)(38 73)(39 72)(40 71)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(56 60)(57 59)

G:=sub<Sym(80)| (1,71,41,26)(2,27,42,72)(3,73,43,28)(4,29,44,74)(5,75,45,30)(6,31,46,76)(7,77,47,32)(8,33,48,78)(9,79,49,34)(10,35,50,80)(11,61,51,36)(12,37,52,62)(13,63,53,38)(14,39,54,64)(15,65,55,40)(16,21,56,66)(17,67,57,22)(18,23,58,68)(19,69,59,24)(20,25,60,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,70)(22,69)(23,68)(24,67)(25,66)(26,65)(27,64)(28,63)(29,62)(30,61)(31,80)(32,79)(33,78)(34,77)(35,76)(36,75)(37,74)(38,73)(39,72)(40,71)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(56,60)(57,59)>;

G:=Group( (1,71,41,26)(2,27,42,72)(3,73,43,28)(4,29,44,74)(5,75,45,30)(6,31,46,76)(7,77,47,32)(8,33,48,78)(9,79,49,34)(10,35,50,80)(11,61,51,36)(12,37,52,62)(13,63,53,38)(14,39,54,64)(15,65,55,40)(16,21,56,66)(17,67,57,22)(18,23,58,68)(19,69,59,24)(20,25,60,70), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,70)(22,69)(23,68)(24,67)(25,66)(26,65)(27,64)(28,63)(29,62)(30,61)(31,80)(32,79)(33,78)(34,77)(35,76)(36,75)(37,74)(38,73)(39,72)(40,71)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(56,60)(57,59) );

G=PermutationGroup([[(1,71,41,26),(2,27,42,72),(3,73,43,28),(4,29,44,74),(5,75,45,30),(6,31,46,76),(7,77,47,32),(8,33,48,78),(9,79,49,34),(10,35,50,80),(11,61,51,36),(12,37,52,62),(13,63,53,38),(14,39,54,64),(15,65,55,40),(16,21,56,66),(17,67,57,22),(18,23,58,68),(19,69,59,24),(20,25,60,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,70),(22,69),(23,68),(24,67),(25,66),(26,65),(27,64),(28,63),(29,62),(30,61),(31,80),(32,79),(33,78),(34,77),(35,76),(36,75),(37,74),(38,73),(39,72),(40,71),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(56,60),(57,59)]])

C4:D20 is a maximal subgroup of
D10.1D8  D4:D20  D10:D8  D4:3D20  C5:(C8:2D4)  Q8:2D20  D10:2SD16  D20:4D4  C5:(C8:D4)  D10.17SD16  C8:8D20  C8:2D20  C4.Q8:D5  D10.13D8  C8:7D20  C2.D8:D5  C8:3D20  C10.2- 1+4  C10.2+ 1+4  C10.112+ 1+4  C42:8D10  C42:9D10  C42.95D10  C42.97D10  C42.228D10  D4xD20  D4:5D20  C42.116D10  Q8:5D20  Q8:6D20  C42.131D10  C42.133D10  Dic10:20D4  D5xC4:D4  C10.382+ 1+4  D20:19D4  C4:C4:26D10  C10.172- 1+4  D20:21D4  Dic10:22D4  C10.562+ 1+4  C10.262- 1+4  C10.1202+ 1+4  C10.1212+ 1+4  C10.662+ 1+4  C10.682+ 1+4  C42.237D10  C42.150D10  C42.153D10  C42.156D10  C42.158D10  C42:23D10  C42.163D10  C42:25D10  C42.240D10  D20:12D4  C42.178D10  C42.179D10  Dic3:D20  C12:7D20  D30:2D4  C12:2D20  C4:D60
C4:D20 is a maximal quotient of
C10.(C4:Q8)  (C2xC4):9D20  C10.55(C4xD4)  (C2xC20):5D4  (C2xDic5):3D4  (C2xC4).21D20  C20:SD16  C4:D40  D20.19D4  C42.36D10  Dic10:8D4  C4:Dic20  C8:8D20  C8:2D20  C8.2D20  C8:7D20  C8:3D20  D10:2Q16  C8.20D20  C8.21D20  C8.24D20  C20:6(C4:C4)  D10:4(C4:C4)  (C2xD20):22C4  (C2xC4):3D20  (C2xC20).56D4  Dic3:D20  C12:7D20  D30:2D4  C12:2D20  C4:D60

34 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F5A5B10A···10F20A···20L
order122222224444445510···1020···20
size11111010202022441010222···24···4

34 irreducible representations

dim1111122222244
type++++++++++++
imageC1C2C2C2C2D4D4D5C4oD4D10D20D4xD5Q8:2D5
kernelC4:D20D10:C4C5xC4:C4C2xC4xD5C2xD20C20D10C4:C4C10C2xC4C4C2C2
# reps1211322226822

Matrix representation of C4:D20 in GL4(F41) generated by

1000
0100
00139
00140
,
143900
163000
0010
00140
,
1100
04000
0010
00140
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,1,1,0,0,39,40],[14,16,0,0,39,30,0,0,0,0,1,1,0,0,0,40],[1,0,0,0,1,40,0,0,0,0,1,1,0,0,0,40] >;

C4:D20 in GAP, Magma, Sage, TeX

C_4\rtimes D_{20}
% in TeX

G:=Group("C4:D20");
// GroupNames label

G:=SmallGroup(160,116);
// by ID

G=gap.SmallGroup(160,116);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,50,4613]);
// Polycyclic

G:=Group<a,b,c|a^4=b^20=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<