extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC40).1C2 = C20.8Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).1C2 | 160,21 |
(C2xC40).2C2 = C20.44D4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).2C2 | 160,23 |
(C2xC40).3C2 = C5xQ8:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).3C2 | 160,53 |
(C2xC40).4C2 = C5xC4:C8 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).4C2 | 160,55 |
(C2xC40).5C2 = C40:5C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).5C2 | 160,25 |
(C2xC40).6C2 = C2xDic20 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).6C2 | 160,126 |
(C2xC40).7C2 = C40.6C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).7C2 | 160,26 |
(C2xC40).8C2 = C40:6C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).8C2 | 160,24 |
(C2xC40).9C2 = C2xC5:2C16 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).9C2 | 160,18 |
(C2xC40).10C2 = C20.4C8 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).10C2 | 160,19 |
(C2xC40).11C2 = C8xDic5 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).11C2 | 160,20 |
(C2xC40).12C2 = C40:8C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).12C2 | 160,22 |
(C2xC40).13C2 = C5xC2.D8 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).13C2 | 160,57 |
(C2xC40).14C2 = C10xQ16 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).14C2 | 160,195 |
(C2xC40).15C2 = C5xC8.C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).15C2 | 160,58 |
(C2xC40).16C2 = C5xC4.Q8 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).16C2 | 160,56 |
(C2xC40).17C2 = C5xC8:C4 | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 160 | | (C2xC40).17C2 | 160,47 |
(C2xC40).18C2 = C5xM5(2) | φ: C2/C1 → C2 ⊆ Aut C2xC40 | 80 | 2 | (C2xC40).18C2 | 160,60 |