direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: C5×M5(2), C4.C40, C80⋊7C2, C16⋊3C10, C8.2C20, C20.7C8, C22.C40, C40.11C4, C40.29C22, (C2×C10).3C8, (C2×C4).5C20, C8.8(C2×C10), (C2×C8).8C10, C2.3(C2×C40), (C2×C40).18C2, (C2×C20).25C4, C10.22(C2×C8), C4.12(C2×C20), C20.70(C2×C4), SmallGroup(160,60)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×M5(2)
G = < a,b,c | a5=b16=c2=1, ab=ba, ac=ca, cbc=b9 >
(1 39 56 66 19)(2 40 57 67 20)(3 41 58 68 21)(4 42 59 69 22)(5 43 60 70 23)(6 44 61 71 24)(7 45 62 72 25)(8 46 63 73 26)(9 47 64 74 27)(10 48 49 75 28)(11 33 50 76 29)(12 34 51 77 30)(13 35 52 78 31)(14 36 53 79 32)(15 37 54 80 17)(16 38 55 65 18)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 10)(4 12)(6 14)(8 16)(18 26)(20 28)(22 30)(24 32)(34 42)(36 44)(38 46)(40 48)(49 57)(51 59)(53 61)(55 63)(65 73)(67 75)(69 77)(71 79)
G:=sub<Sym(80)| (1,39,56,66,19)(2,40,57,67,20)(3,41,58,68,21)(4,42,59,69,22)(5,43,60,70,23)(6,44,61,71,24)(7,45,62,72,25)(8,46,63,73,26)(9,47,64,74,27)(10,48,49,75,28)(11,33,50,76,29)(12,34,51,77,30)(13,35,52,78,31)(14,36,53,79,32)(15,37,54,80,17)(16,38,55,65,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79)>;
G:=Group( (1,39,56,66,19)(2,40,57,67,20)(3,41,58,68,21)(4,42,59,69,22)(5,43,60,70,23)(6,44,61,71,24)(7,45,62,72,25)(8,46,63,73,26)(9,47,64,74,27)(10,48,49,75,28)(11,33,50,76,29)(12,34,51,77,30)(13,35,52,78,31)(14,36,53,79,32)(15,37,54,80,17)(16,38,55,65,18), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,10)(4,12)(6,14)(8,16)(18,26)(20,28)(22,30)(24,32)(34,42)(36,44)(38,46)(40,48)(49,57)(51,59)(53,61)(55,63)(65,73)(67,75)(69,77)(71,79) );
G=PermutationGroup([[(1,39,56,66,19),(2,40,57,67,20),(3,41,58,68,21),(4,42,59,69,22),(5,43,60,70,23),(6,44,61,71,24),(7,45,62,72,25),(8,46,63,73,26),(9,47,64,74,27),(10,48,49,75,28),(11,33,50,76,29),(12,34,51,77,30),(13,35,52,78,31),(14,36,53,79,32),(15,37,54,80,17),(16,38,55,65,18)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,10),(4,12),(6,14),(8,16),(18,26),(20,28),(22,30),(24,32),(34,42),(36,44),(38,46),(40,48),(49,57),(51,59),(53,61),(55,63),(65,73),(67,75),(69,77),(71,79)]])
C5×M5(2) is a maximal subgroup of
C40.9Q8 C80⋊C4 C40.Q8 C8.25D20 D20.4C8 D40.4C4 C20.4D8 D40⋊8C4 D20.5C8 D80⋊C2 C16.D10
100 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 8E | 8F | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 16A | ··· | 16H | 20A | ··· | 20H | 20I | 20J | 20K | 20L | 40A | ··· | 40P | 40Q | ··· | 40X | 80A | ··· | 80AF |
order | 1 | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 16 | ··· | 16 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||||||||||||
image | C1 | C2 | C2 | C4 | C4 | C5 | C8 | C8 | C10 | C10 | C20 | C20 | C40 | C40 | M5(2) | C5×M5(2) |
kernel | C5×M5(2) | C80 | C2×C40 | C40 | C2×C20 | M5(2) | C20 | C2×C10 | C16 | C2×C8 | C8 | C2×C4 | C4 | C22 | C5 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 8 | 4 | 8 | 8 | 16 | 16 | 4 | 16 |
Matrix representation of C5×M5(2) ►in GL2(𝔽41) generated by
16 | 0 |
0 | 16 |
0 | 27 |
1 | 0 |
40 | 0 |
0 | 1 |
G:=sub<GL(2,GF(41))| [16,0,0,16],[0,1,27,0],[40,0,0,1] >;
C5×M5(2) in GAP, Magma, Sage, TeX
C_5\times M_5(2)
% in TeX
G:=Group("C5xM5(2)");
// GroupNames label
G:=SmallGroup(160,60);
// by ID
G=gap.SmallGroup(160,60);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-2,-2,120,985,69,88]);
// Polycyclic
G:=Group<a,b,c|a^5=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^9>;
// generators/relations
Export