Extensions 1→N→G→Q→1 with N=C5×Q16 and Q=C2

Direct product G=N×Q with N=C5×Q16 and Q=C2
dρLabelID
C10×Q16160C10xQ16160,195

Semidirect products G=N:Q with N=C5×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Q16)⋊1C2 = C5⋊SD32φ: C2/C1C2 ⊆ Out C5×Q16804+(C5xQ16):1C2160,35
(C5×Q16)⋊2C2 = D5×Q16φ: C2/C1C2 ⊆ Out C5×Q16804-(C5xQ16):2C2160,138
(C5×Q16)⋊3C2 = Q8.D10φ: C2/C1C2 ⊆ Out C5×Q16804+(C5xQ16):3C2160,140
(C5×Q16)⋊4C2 = Q16⋊D5φ: C2/C1C2 ⊆ Out C5×Q16804(C5xQ16):4C2160,139
(C5×Q16)⋊5C2 = C5×SD32φ: C2/C1C2 ⊆ Out C5×Q16802(C5xQ16):5C2160,62
(C5×Q16)⋊6C2 = C5×C8.C22φ: C2/C1C2 ⊆ Out C5×Q16804(C5xQ16):6C2160,198
(C5×Q16)⋊7C2 = C5×C4○D8φ: trivial image802(C5xQ16):7C2160,196

Non-split extensions G=N.Q with N=C5×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Q16).1C2 = C5⋊Q32φ: C2/C1C2 ⊆ Out C5×Q161604-(C5xQ16).1C2160,36
(C5×Q16).2C2 = C5×Q32φ: C2/C1C2 ⊆ Out C5×Q161602(C5xQ16).2C2160,63

׿
×
𝔽