metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C5⋊3SD32, Q16⋊1D5, C8.6D10, C20.5D4, D40.2C2, C10.10D8, C40.4C22, C5⋊2C16⋊3C2, (C5×Q16)⋊1C2, C2.6(D4⋊D5), C4.3(C5⋊D4), SmallGroup(160,35)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5⋊SD32
G = < a,b,c | a5=b16=c2=1, bab-1=cac=a-1, cbc=b7 >
Character table of C5⋊SD32
class | 1 | 2A | 2B | 4A | 4B | 5A | 5B | 8A | 8B | 10A | 10B | 16A | 16B | 16C | 16D | 20A | 20B | 20C | 20D | 20E | 20F | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 40 | 2 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 2 | -2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | √2 | -√2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ10 | 2 | 2 | 0 | 2 | -2 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | -√2 | √2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ13 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ14 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ15 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ16 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | complex lifted from SD32 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | complex lifted from SD32 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | complex lifted from SD32 |
ρ19 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | complex lifted from SD32 |
ρ20 | 4 | 4 | 0 | -4 | 0 | -1+√5 | -1-√5 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊D5, Schur index 2 |
ρ21 | 4 | 4 | 0 | -4 | 0 | -1-√5 | -1+√5 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊D5, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√2 | 2√2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | orthogonal faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√2 | -2√2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | orthogonal faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√2 | -2√2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | orthogonal faithful, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√2 | 2√2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | orthogonal faithful, Schur index 2 |
(1 40 70 23 49)(2 50 24 71 41)(3 42 72 25 51)(4 52 26 73 43)(5 44 74 27 53)(6 54 28 75 45)(7 46 76 29 55)(8 56 30 77 47)(9 48 78 31 57)(10 58 32 79 33)(11 34 80 17 59)(12 60 18 65 35)(13 36 66 19 61)(14 62 20 67 37)(15 38 68 21 63)(16 64 22 69 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 76)(18 67)(19 74)(20 65)(21 72)(22 79)(23 70)(24 77)(25 68)(26 75)(27 66)(28 73)(29 80)(30 71)(31 78)(32 69)(33 64)(34 55)(35 62)(36 53)(37 60)(38 51)(39 58)(40 49)(41 56)(42 63)(43 54)(44 61)(45 52)(46 59)(47 50)(48 57)
G:=sub<Sym(80)| (1,40,70,23,49)(2,50,24,71,41)(3,42,72,25,51)(4,52,26,73,43)(5,44,74,27,53)(6,54,28,75,45)(7,46,76,29,55)(8,56,30,77,47)(9,48,78,31,57)(10,58,32,79,33)(11,34,80,17,59)(12,60,18,65,35)(13,36,66,19,61)(14,62,20,67,37)(15,38,68,21,63)(16,64,22,69,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,76)(18,67)(19,74)(20,65)(21,72)(22,79)(23,70)(24,77)(25,68)(26,75)(27,66)(28,73)(29,80)(30,71)(31,78)(32,69)(33,64)(34,55)(35,62)(36,53)(37,60)(38,51)(39,58)(40,49)(41,56)(42,63)(43,54)(44,61)(45,52)(46,59)(47,50)(48,57)>;
G:=Group( (1,40,70,23,49)(2,50,24,71,41)(3,42,72,25,51)(4,52,26,73,43)(5,44,74,27,53)(6,54,28,75,45)(7,46,76,29,55)(8,56,30,77,47)(9,48,78,31,57)(10,58,32,79,33)(11,34,80,17,59)(12,60,18,65,35)(13,36,66,19,61)(14,62,20,67,37)(15,38,68,21,63)(16,64,22,69,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,76)(18,67)(19,74)(20,65)(21,72)(22,79)(23,70)(24,77)(25,68)(26,75)(27,66)(28,73)(29,80)(30,71)(31,78)(32,69)(33,64)(34,55)(35,62)(36,53)(37,60)(38,51)(39,58)(40,49)(41,56)(42,63)(43,54)(44,61)(45,52)(46,59)(47,50)(48,57) );
G=PermutationGroup([[(1,40,70,23,49),(2,50,24,71,41),(3,42,72,25,51),(4,52,26,73,43),(5,44,74,27,53),(6,54,28,75,45),(7,46,76,29,55),(8,56,30,77,47),(9,48,78,31,57),(10,58,32,79,33),(11,34,80,17,59),(12,60,18,65,35),(13,36,66,19,61),(14,62,20,67,37),(15,38,68,21,63),(16,64,22,69,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,76),(18,67),(19,74),(20,65),(21,72),(22,79),(23,70),(24,77),(25,68),(26,75),(27,66),(28,73),(29,80),(30,71),(31,78),(32,69),(33,64),(34,55),(35,62),(36,53),(37,60),(38,51),(39,58),(40,49),(41,56),(42,63),(43,54),(44,61),(45,52),(46,59),(47,50),(48,57)]])
C5⋊SD32 is a maximal subgroup of
D5×SD32 C16⋊D10 Q32⋊D5 D80⋊5C2 Q16.D10 D8⋊D10 C40.30C23 C40.D6 Dic12⋊D5 C8.6D30
C5⋊SD32 is a maximal quotient of
C10.SD32 C40.5D4 C40.15D4 C40.D6 Dic12⋊D5 C8.6D30
Matrix representation of C5⋊SD32 ►in GL4(𝔽241) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 51 | 1 |
0 | 0 | 240 | 0 |
179 | 14 | 0 | 0 |
137 | 144 | 0 | 0 |
0 | 0 | 51 | 190 |
0 | 0 | 240 | 190 |
1 | 0 | 0 | 0 |
118 | 240 | 0 | 0 |
0 | 0 | 51 | 190 |
0 | 0 | 240 | 190 |
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,51,240,0,0,1,0],[179,137,0,0,14,144,0,0,0,0,51,240,0,0,190,190],[1,118,0,0,0,240,0,0,0,0,51,240,0,0,190,190] >;
C5⋊SD32 in GAP, Magma, Sage, TeX
C_5\rtimes {\rm SD}_{32}
% in TeX
G:=Group("C5:SD32");
// GroupNames label
G:=SmallGroup(160,35);
// by ID
G=gap.SmallGroup(160,35);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,73,103,218,116,122,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^5=b^16=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^7>;
// generators/relations
Export
Subgroup lattice of C5⋊SD32 in TeX
Character table of C5⋊SD32 in TeX