Extensions 1→N→G→Q→1 with N=C2×D20 and Q=C2

Direct product G=N×Q with N=C2×D20 and Q=C2
dρLabelID
C22×D2080C2^2xD20160,215

Semidirect products G=N:Q with N=C2×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D20)⋊1C2 = C204D4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):1C2160,95
(C2×D20)⋊2C2 = C22⋊D20φ: C2/C1C2 ⊆ Out C2×D2040(C2xD20):2C2160,103
(C2×D20)⋊3C2 = D10⋊D4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):3C2160,105
(C2×D20)⋊4C2 = C4⋊D20φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):4C2160,116
(C2×D20)⋊5C2 = C2×D40φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):5C2160,124
(C2×D20)⋊6C2 = C207D4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):6C2160,151
(C2×D20)⋊7C2 = C8⋊D10φ: C2/C1C2 ⊆ Out C2×D20404+(C2xD20):7C2160,129
(C2×D20)⋊8C2 = C2×D4⋊D5φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):8C2160,152
(C2×D20)⋊9C2 = C20⋊D4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):9C2160,161
(C2×D20)⋊10C2 = D4⋊D10φ: C2/C1C2 ⊆ Out C2×D20404+(C2xD20):10C2160,170
(C2×D20)⋊11C2 = C2×D4×D5φ: C2/C1C2 ⊆ Out C2×D2040(C2xD20):11C2160,217
(C2×D20)⋊12C2 = C2×Q82D5φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20):12C2160,221
(C2×D20)⋊13C2 = D48D10φ: C2/C1C2 ⊆ Out C2×D20404+(C2xD20):13C2160,224
(C2×D20)⋊14C2 = C2×C4○D20φ: trivial image80(C2xD20):14C2160,216

Non-split extensions G=N.Q with N=C2×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D20).1C2 = D205C4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).1C2160,28
(C2×D20).2C2 = D10.D4φ: C2/C1C2 ⊆ Out C2×D20404+(C2xD20).2C2160,74
(C2×D20).3C2 = C4.D20φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).3C2160,96
(C2×D20).4C2 = D10.13D4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).4C2160,115
(C2×D20).5C2 = C2×C40⋊C2φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).5C2160,123
(C2×D20).6C2 = D206C4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).6C2160,16
(C2×D20).7C2 = C20.46D4φ: C2/C1C2 ⊆ Out C2×D20404+(C2xD20).7C2160,30
(C2×D20).8C2 = D208C4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).8C2160,114
(C2×D20).9C2 = C2×Q8⋊D5φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).9C2160,162
(C2×D20).10C2 = C20.23D4φ: C2/C1C2 ⊆ Out C2×D2080(C2xD20).10C2160,168
(C2×D20).11C2 = C4×D20φ: trivial image80(C2xD20).11C2160,94

׿
×
𝔽