Extensions 1→N→G→Q→1 with N=Dic10 and Q=C4

Direct product G=N×Q with N=Dic10 and Q=C4
dρLabelID
C4×Dic10160C4xDic10160,89

Semidirect products G=N:Q with N=Dic10 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic101C4 = D4⋊F5φ: C4/C1C4 ⊆ Out Dic10408-Dic10:1C4160,83
Dic102C4 = Q8⋊F5φ: C4/C1C4 ⊆ Out Dic10408-Dic10:2C4160,84
Dic103C4 = Q8×F5φ: C4/C1C4 ⊆ Out Dic10408-Dic10:3C4160,209
Dic104C4 = D204C4φ: C4/C2C2 ⊆ Out Dic10402Dic10:4C4160,12
Dic105C4 = C20.44D4φ: C4/C2C2 ⊆ Out Dic10160Dic10:5C4160,23
Dic106C4 = C10.Q16φ: C4/C2C2 ⊆ Out Dic10160Dic10:6C4160,17
Dic107C4 = D207C4φ: C4/C2C2 ⊆ Out Dic10404Dic10:7C4160,32
Dic108C4 = Dic53Q8φ: C4/C2C2 ⊆ Out Dic10160Dic10:8C4160,108

Non-split extensions G=N.Q with N=Dic10 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic10.C4 = D4.F5φ: C4/C1C4 ⊆ Out Dic10808-Dic10.C4160,206
Dic10.2C4 = D20.2C4φ: C4/C2C2 ⊆ Out Dic10804Dic10.2C4160,128
Dic10.3C4 = D20.3C4φ: trivial image802Dic10.3C4160,122

׿
×
𝔽