Copied to
clipboard

G = D207C4order 160 = 25·5

4th semidirect product of D20 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D207C4, C20.54D4, Dic107C4, M4(2)⋊4D5, C22.3D20, C54C4≀C2, C4.3(C4×D5), (C2×C10).1D4, C20.27(C2×C4), (C4×Dic5)⋊1C2, C4○D20.2C2, (C2×C4).38D10, C4.29(C5⋊D4), (C5×M4(2))⋊8C2, (C2×C20).15C22, C10.21(C22⋊C4), C2.11(D10⋊C4), SmallGroup(160,32)

Series: Derived Chief Lower central Upper central

C1C20 — D207C4
C1C5C10C20C2×C20C4○D20 — D207C4
C5C10C20 — D207C4
C1C4C2×C4M4(2)

Generators and relations for D207C4
 G = < a,b,c | a20=b2=c4=1, bab=a-1, cac-1=a9, cbc-1=a3b >

2C2
20C2
10C4
10C22
10C4
10C4
2C10
4D5
2C8
5D4
5Q8
10C2×C4
10C2×C4
10D4
2Dic5
2Dic5
2D10
2Dic5
5C42
5C4○D4
2C4×D5
2C5⋊D4
2C2×Dic5
2C40
5C4≀C2

Smallest permutation representation of D207C4
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 22)(2 21)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)
(1 11)(2 20)(3 9)(4 18)(5 7)(6 16)(8 14)(10 12)(13 19)(15 17)(21 30 31 40)(22 39 32 29)(23 28 33 38)(24 37 34 27)(25 26 35 36)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,22)(2,21)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23), (1,11)(2,20)(3,9)(4,18)(5,7)(6,16)(8,14)(10,12)(13,19)(15,17)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,22)(2,21)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23), (1,11)(2,20)(3,9)(4,18)(5,7)(6,16)(8,14)(10,12)(13,19)(15,17)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,22),(2,21),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23)], [(1,11),(2,20),(3,9),(4,18),(5,7),(6,16),(8,14),(10,12),(13,19),(15,17),(21,30,31,40),(22,39,32,29),(23,28,33,38),(24,37,34,27),(25,26,35,36)]])

D207C4 is a maximal subgroup of
D20.1D4  D201D4  D20.4D4  D20.5D4  D5×C4≀C2  C42⋊D10  D4016C4  D4013C4  C23.20D20  C40.93D4  C40.50D4  D2018D4  D20.38D4  D20.39D4  D20.40D4  C60.96D4  D6016C4  D6010C4
D207C4 is a maximal quotient of
C42.D10  C42.2D10  C23.30D20  C22.2D40  D204C8  Dic104C8  C20.33C42  C60.96D4  D6016C4  D6010C4

34 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H5A5B8A8B10A10B10C10D20A20B20C20D20E20F40A···40H
order12224444444455881010101020202020202040···40
size112201121010101020224422442222444···4

34 irreducible representations

dim111111222222224
type+++++++++
imageC1C2C2C2C4C4D4D4D5D10C4≀C2C4×D5C5⋊D4D20D207C4
kernelD207C4C4×Dic5C5×M4(2)C4○D20Dic10D20C20C2×C10M4(2)C2×C4C5C4C4C22C1
# reps111122112244444

Matrix representation of D207C4 in GL4(𝔽41) generated by

7100
334000
00320
0009
,
1100
04000
00032
0090
,
343500
8700
00400
0009
G:=sub<GL(4,GF(41))| [7,33,0,0,1,40,0,0,0,0,32,0,0,0,0,9],[1,0,0,0,1,40,0,0,0,0,0,9,0,0,32,0],[34,8,0,0,35,7,0,0,0,0,40,0,0,0,0,9] >;

D207C4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_7C_4
% in TeX

G:=Group("D20:7C4");
// GroupNames label

G:=SmallGroup(160,32);
// by ID

G=gap.SmallGroup(160,32);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,121,31,86,579,297,69,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of D207C4 in TeX

׿
×
𝔽