metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20⋊7C4, C20.54D4, Dic10⋊7C4, M4(2)⋊4D5, C22.3D20, C5⋊4C4≀C2, C4.3(C4×D5), (C2×C10).1D4, C20.27(C2×C4), (C4×Dic5)⋊1C2, C4○D20.2C2, (C2×C4).38D10, C4.29(C5⋊D4), (C5×M4(2))⋊8C2, (C2×C20).15C22, C10.21(C22⋊C4), C2.11(D10⋊C4), SmallGroup(160,32)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20⋊7C4
G = < a,b,c | a20=b2=c4=1, bab=a-1, cac-1=a9, cbc-1=a3b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 22)(2 21)(3 40)(4 39)(5 38)(6 37)(7 36)(8 35)(9 34)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)
(1 11)(2 20)(3 9)(4 18)(5 7)(6 16)(8 14)(10 12)(13 19)(15 17)(21 30 31 40)(22 39 32 29)(23 28 33 38)(24 37 34 27)(25 26 35 36)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,22)(2,21)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23), (1,11)(2,20)(3,9)(4,18)(5,7)(6,16)(8,14)(10,12)(13,19)(15,17)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,22)(2,21)(3,40)(4,39)(5,38)(6,37)(7,36)(8,35)(9,34)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23), (1,11)(2,20)(3,9)(4,18)(5,7)(6,16)(8,14)(10,12)(13,19)(15,17)(21,30,31,40)(22,39,32,29)(23,28,33,38)(24,37,34,27)(25,26,35,36) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,22),(2,21),(3,40),(4,39),(5,38),(6,37),(7,36),(8,35),(9,34),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23)], [(1,11),(2,20),(3,9),(4,18),(5,7),(6,16),(8,14),(10,12),(13,19),(15,17),(21,30,31,40),(22,39,32,29),(23,28,33,38),(24,37,34,27),(25,26,35,36)]])
D20⋊7C4 is a maximal subgroup of
D20.1D4 D20⋊1D4 D20.4D4 D20.5D4 D5×C4≀C2 C42⋊D10 D40⋊16C4 D40⋊13C4 C23.20D20 C40.93D4 C40.50D4 D20⋊18D4 D20.38D4 D20.39D4 D20.40D4 C60.96D4 D60⋊16C4 D60⋊10C4
D20⋊7C4 is a maximal quotient of
C42.D10 C42.2D10 C23.30D20 C22.2D40 D20⋊4C8 Dic10⋊4C8 C20.33C42 C60.96D4 D60⋊16C4 D60⋊10C4
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E | 20F | 40A | ··· | 40H |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 20 | 1 | 1 | 2 | 10 | 10 | 10 | 10 | 20 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D5 | D10 | C4≀C2 | C4×D5 | C5⋊D4 | D20 | D20⋊7C4 |
kernel | D20⋊7C4 | C4×Dic5 | C5×M4(2) | C4○D20 | Dic10 | D20 | C20 | C2×C10 | M4(2) | C2×C4 | C5 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 |
Matrix representation of D20⋊7C4 ►in GL4(𝔽41) generated by
7 | 1 | 0 | 0 |
33 | 40 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 9 |
1 | 1 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 32 |
0 | 0 | 9 | 0 |
34 | 35 | 0 | 0 |
8 | 7 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 9 |
G:=sub<GL(4,GF(41))| [7,33,0,0,1,40,0,0,0,0,32,0,0,0,0,9],[1,0,0,0,1,40,0,0,0,0,0,9,0,0,32,0],[34,8,0,0,35,7,0,0,0,0,40,0,0,0,0,9] >;
D20⋊7C4 in GAP, Magma, Sage, TeX
D_{20}\rtimes_7C_4
% in TeX
G:=Group("D20:7C4");
// GroupNames label
G:=SmallGroup(160,32);
// by ID
G=gap.SmallGroup(160,32);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,121,31,86,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c|a^20=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^3*b>;
// generators/relations
Export