Extensions 1→N→G→Q→1 with N=M4(2) and Q=D5

Direct product G=N×Q with N=M4(2) and Q=D5
dρLabelID
D5×M4(2)404D5xM4(2)160,127

Semidirect products G=N:Q with N=M4(2) and Q=D5
extensionφ:Q→Out NdρLabelID
M4(2)⋊1D5 = C8⋊D10φ: D5/C5C2 ⊆ Out M4(2)404+M4(2):1D5160,129
M4(2)⋊2D5 = C8.D10φ: D5/C5C2 ⊆ Out M4(2)804-M4(2):2D5160,130
M4(2)⋊3D5 = C20.46D4φ: D5/C5C2 ⊆ Out M4(2)404+M4(2):3D5160,30
M4(2)⋊4D5 = D207C4φ: D5/C5C2 ⊆ Out M4(2)404M4(2):4D5160,32
M4(2)⋊5D5 = D20.2C4φ: trivial image804M4(2):5D5160,128

Non-split extensions G=N.Q with N=M4(2) and Q=D5
extensionφ:Q→Out NdρLabelID
M4(2).1D5 = C20.53D4φ: D5/C5C2 ⊆ Out M4(2)804M4(2).1D5160,29
M4(2).2D5 = C4.12D20φ: D5/C5C2 ⊆ Out M4(2)804-M4(2).2D5160,31

׿
×
𝔽