Extensions 1→N→G→Q→1 with N=C2xC10 and Q=D4

Direct product G=NxQ with N=C2xC10 and Q=D4
dρLabelID
D4xC2xC1080D4xC2xC10160,229

Semidirect products G=N:Q with N=C2xC10 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C2xC10):1D4 = C22:D20φ: D4/C2C22 ⊆ Aut C2xC1040(C2xC10):1D4160,103
(C2xC10):2D4 = C23:D10φ: D4/C2C22 ⊆ Aut C2xC1040(C2xC10):2D4160,158
(C2xC10):3D4 = Dic5:D4φ: D4/C2C22 ⊆ Aut C2xC1080(C2xC10):3D4160,160
(C2xC10):4D4 = C5xC4:D4φ: D4/C4C2 ⊆ Aut C2xC1080(C2xC10):4D4160,182
(C2xC10):5D4 = C20:7D4φ: D4/C4C2 ⊆ Aut C2xC1080(C2xC10):5D4160,151
(C2xC10):6D4 = C22xD20φ: D4/C4C2 ⊆ Aut C2xC1080(C2xC10):6D4160,215
(C2xC10):7D4 = C5xC22wrC2φ: D4/C22C2 ⊆ Aut C2xC1040(C2xC10):7D4160,181
(C2xC10):8D4 = C24:2D5φ: D4/C22C2 ⊆ Aut C2xC1040(C2xC10):8D4160,174
(C2xC10):9D4 = C22xC5:D4φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10):9D4160,227

Non-split extensions G=N.Q with N=C2xC10 and Q=D4
extensionφ:Q→Aut NdρLabelID
(C2xC10).1D4 = D20:7C4φ: D4/C2C22 ⊆ Aut C2xC10404(C2xC10).1D4160,32
(C2xC10).2D4 = C23:Dic5φ: D4/C2C22 ⊆ Aut C2xC10404(C2xC10).2D4160,41
(C2xC10).3D4 = D4:2Dic5φ: D4/C2C22 ⊆ Aut C2xC10404(C2xC10).3D4160,44
(C2xC10).4D4 = C22.D20φ: D4/C2C22 ⊆ Aut C2xC1080(C2xC10).4D4160,107
(C2xC10).5D4 = C8:D10φ: D4/C2C22 ⊆ Aut C2xC10404+(C2xC10).5D4160,129
(C2xC10).6D4 = C8.D10φ: D4/C2C22 ⊆ Aut C2xC10804-(C2xC10).6D4160,130
(C2xC10).7D4 = C23.18D10φ: D4/C2C22 ⊆ Aut C2xC1080(C2xC10).7D4160,156
(C2xC10).8D4 = D4:D10φ: D4/C2C22 ⊆ Aut C2xC10404+(C2xC10).8D4160,170
(C2xC10).9D4 = D4.8D10φ: D4/C2C22 ⊆ Aut C2xC10804(C2xC10).9D4160,171
(C2xC10).10D4 = D4.9D10φ: D4/C2C22 ⊆ Aut C2xC10804-(C2xC10).10D4160,172
(C2xC10).11D4 = C5xC4oD8φ: D4/C4C2 ⊆ Aut C2xC10802(C2xC10).11D4160,196
(C2xC10).12D4 = C20.44D4φ: D4/C4C2 ⊆ Aut C2xC10160(C2xC10).12D4160,23
(C2xC10).13D4 = C40:6C4φ: D4/C4C2 ⊆ Aut C2xC10160(C2xC10).13D4160,24
(C2xC10).14D4 = C40:5C4φ: D4/C4C2 ⊆ Aut C2xC10160(C2xC10).14D4160,25
(C2xC10).15D4 = D20:5C4φ: D4/C4C2 ⊆ Aut C2xC1080(C2xC10).15D4160,28
(C2xC10).16D4 = C2xC40:C2φ: D4/C4C2 ⊆ Aut C2xC1080(C2xC10).16D4160,123
(C2xC10).17D4 = C2xD40φ: D4/C4C2 ⊆ Aut C2xC1080(C2xC10).17D4160,124
(C2xC10).18D4 = D40:7C2φ: D4/C4C2 ⊆ Aut C2xC10802(C2xC10).18D4160,125
(C2xC10).19D4 = C2xDic20φ: D4/C4C2 ⊆ Aut C2xC10160(C2xC10).19D4160,126
(C2xC10).20D4 = C2xC4:Dic5φ: D4/C4C2 ⊆ Aut C2xC10160(C2xC10).20D4160,146
(C2xC10).21D4 = C5xC23:C4φ: D4/C22C2 ⊆ Aut C2xC10404(C2xC10).21D4160,49
(C2xC10).22D4 = C5xC4wrC2φ: D4/C22C2 ⊆ Aut C2xC10402(C2xC10).22D4160,54
(C2xC10).23D4 = C5xC22.D4φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).23D4160,184
(C2xC10).24D4 = C5xC8:C22φ: D4/C22C2 ⊆ Aut C2xC10404(C2xC10).24D4160,197
(C2xC10).25D4 = C5xC8.C22φ: D4/C22C2 ⊆ Aut C2xC10804(C2xC10).25D4160,198
(C2xC10).26D4 = D20:4C4φ: D4/C22C2 ⊆ Aut C2xC10402(C2xC10).26D4160,12
(C2xC10).27D4 = C23.1D10φ: D4/C22C2 ⊆ Aut C2xC10404(C2xC10).27D4160,13
(C2xC10).28D4 = C10.D8φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).28D4160,14
(C2xC10).29D4 = C20.Q8φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).29D4160,15
(C2xC10).30D4 = D20:6C4φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).30D4160,16
(C2xC10).31D4 = C10.Q16φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).31D4160,17
(C2xC10).32D4 = C10.10C42φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).32D4160,38
(C2xC10).33D4 = D4:Dic5φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).33D4160,39
(C2xC10).34D4 = Q8:Dic5φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).34D4160,42
(C2xC10).35D4 = C2xC10.D4φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).35D4160,144
(C2xC10).36D4 = C2xD10:C4φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).36D4160,148
(C2xC10).37D4 = C23.23D10φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).37D4160,150
(C2xC10).38D4 = C2xD4:D5φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).38D4160,152
(C2xC10).39D4 = D4.D10φ: D4/C22C2 ⊆ Aut C2xC10404(C2xC10).39D4160,153
(C2xC10).40D4 = C2xD4.D5φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).40D4160,154
(C2xC10).41D4 = C2xQ8:D5φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).41D4160,162
(C2xC10).42D4 = C20.C23φ: D4/C22C2 ⊆ Aut C2xC10804(C2xC10).42D4160,163
(C2xC10).43D4 = C2xC5:Q16φ: D4/C22C2 ⊆ Aut C2xC10160(C2xC10).43D4160,164
(C2xC10).44D4 = C2xC23.D5φ: D4/C22C2 ⊆ Aut C2xC1080(C2xC10).44D4160,173
(C2xC10).45D4 = C5xC2.C42central extension (φ=1)160(C2xC10).45D4160,45
(C2xC10).46D4 = C5xD4:C4central extension (φ=1)80(C2xC10).46D4160,52
(C2xC10).47D4 = C5xQ8:C4central extension (φ=1)160(C2xC10).47D4160,53
(C2xC10).48D4 = C5xC4.Q8central extension (φ=1)160(C2xC10).48D4160,56
(C2xC10).49D4 = C5xC2.D8central extension (φ=1)160(C2xC10).49D4160,57
(C2xC10).50D4 = C10xC22:C4central extension (φ=1)80(C2xC10).50D4160,176
(C2xC10).51D4 = C10xC4:C4central extension (φ=1)160(C2xC10).51D4160,177
(C2xC10).52D4 = C10xD8central extension (φ=1)80(C2xC10).52D4160,193
(C2xC10).53D4 = C10xSD16central extension (φ=1)80(C2xC10).53D4160,194
(C2xC10).54D4 = C10xQ16central extension (φ=1)160(C2xC10).54D4160,195

׿
x
:
Z
F
o
wr
Q
<