metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C19⋊2C9, C57.C3, C3.(C19⋊C3), SmallGroup(171,1)
Series: Derived ►Chief ►Lower central ►Upper central
C19 — C19⋊2C9 |
Generators and relations for C19⋊2C9
G = < a,b | a19=b9=1, bab-1=a11 >
Character table of C19⋊2C9
class | 1 | 3A | 3B | 9A | 9B | 9C | 9D | 9E | 9F | 19A | 19B | 19C | 19D | 19E | 19F | 57A | 57B | 57C | 57D | 57E | 57F | 57G | 57H | 57I | 57J | 57K | 57L | |
size | 1 | 1 | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | ζ32 | ζ3 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 9 |
ρ5 | 1 | ζ3 | ζ32 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 9 |
ρ6 | 1 | ζ32 | ζ3 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 9 |
ρ7 | 1 | ζ3 | ζ32 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 9 |
ρ8 | 1 | ζ3 | ζ32 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 9 |
ρ9 | 1 | ζ32 | ζ3 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 9 |
ρ10 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ199+ζ196+ζ194 | ζ1911+ζ197+ζ19 | ζ1911+ζ197+ζ19 | complex lifted from C19⋊C3 |
ρ11 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1917+ζ1916+ζ195 | ζ199+ζ196+ζ194 | ζ199+ζ196+ζ194 | complex lifted from C19⋊C3 |
ρ12 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1914+ζ193+ζ192 | ζ1915+ζ1913+ζ1910 | ζ1915+ζ1913+ζ1910 | complex lifted from C19⋊C3 |
ρ13 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1911+ζ197+ζ19 | ζ1917+ζ1916+ζ195 | ζ1917+ζ1916+ζ195 | complex lifted from C19⋊C3 |
ρ14 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1918+ζ1912+ζ198 | ζ1914+ζ193+ζ192 | ζ1914+ζ193+ζ192 | complex lifted from C19⋊C3 |
ρ15 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1915+ζ1913+ζ1910 | ζ1918+ζ1912+ζ198 | ζ1918+ζ1912+ζ198 | complex lifted from C19⋊C3 |
ρ16 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | complex faithful |
ρ17 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | complex faithful |
ρ18 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | complex faithful |
ρ19 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | complex faithful |
ρ20 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | complex faithful |
ρ21 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | complex faithful |
ρ22 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | complex faithful |
ρ23 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | complex faithful |
ρ24 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | complex faithful |
ρ25 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | complex faithful |
ρ26 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | complex faithful |
ρ27 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ32ζ1911+ζ32ζ197+ζ32ζ19 | ζ3ζ1911+ζ3ζ197+ζ3ζ19 | ζ3ζ1914+ζ3ζ193+ζ3ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ198 | ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ195 | ζ32ζ1918+ζ32ζ1912+ζ32ζ198 | ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ195 | ζ32ζ1914+ζ32ζ193+ζ32ζ192 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)(134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171)
(1 157 109 56 139 81 20 129 61)(2 164 101 57 146 92 21 117 72)(3 171 112 39 134 84 22 124 64)(4 159 104 40 141 95 23 131 75)(5 166 96 41 148 87 24 119 67)(6 154 107 42 136 79 25 126 59)(7 161 99 43 143 90 26 133 70)(8 168 110 44 150 82 27 121 62)(9 156 102 45 138 93 28 128 73)(10 163 113 46 145 85 29 116 65)(11 170 105 47 152 77 30 123 76)(12 158 97 48 140 88 31 130 68)(13 165 108 49 147 80 32 118 60)(14 153 100 50 135 91 33 125 71)(15 160 111 51 142 83 34 132 63)(16 167 103 52 149 94 35 120 74)(17 155 114 53 137 86 36 127 66)(18 162 106 54 144 78 37 115 58)(19 169 98 55 151 89 38 122 69)
G:=sub<Sym(171)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171), (1,157,109,56,139,81,20,129,61)(2,164,101,57,146,92,21,117,72)(3,171,112,39,134,84,22,124,64)(4,159,104,40,141,95,23,131,75)(5,166,96,41,148,87,24,119,67)(6,154,107,42,136,79,25,126,59)(7,161,99,43,143,90,26,133,70)(8,168,110,44,150,82,27,121,62)(9,156,102,45,138,93,28,128,73)(10,163,113,46,145,85,29,116,65)(11,170,105,47,152,77,30,123,76)(12,158,97,48,140,88,31,130,68)(13,165,108,49,147,80,32,118,60)(14,153,100,50,135,91,33,125,71)(15,160,111,51,142,83,34,132,63)(16,167,103,52,149,94,35,120,74)(17,155,114,53,137,86,36,127,66)(18,162,106,54,144,78,37,115,58)(19,169,98,55,151,89,38,122,69)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171), (1,157,109,56,139,81,20,129,61)(2,164,101,57,146,92,21,117,72)(3,171,112,39,134,84,22,124,64)(4,159,104,40,141,95,23,131,75)(5,166,96,41,148,87,24,119,67)(6,154,107,42,136,79,25,126,59)(7,161,99,43,143,90,26,133,70)(8,168,110,44,150,82,27,121,62)(9,156,102,45,138,93,28,128,73)(10,163,113,46,145,85,29,116,65)(11,170,105,47,152,77,30,123,76)(12,158,97,48,140,88,31,130,68)(13,165,108,49,147,80,32,118,60)(14,153,100,50,135,91,33,125,71)(15,160,111,51,142,83,34,132,63)(16,167,103,52,149,94,35,120,74)(17,155,114,53,137,86,36,127,66)(18,162,106,54,144,78,37,115,58)(19,169,98,55,151,89,38,122,69) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133),(134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171)], [(1,157,109,56,139,81,20,129,61),(2,164,101,57,146,92,21,117,72),(3,171,112,39,134,84,22,124,64),(4,159,104,40,141,95,23,131,75),(5,166,96,41,148,87,24,119,67),(6,154,107,42,136,79,25,126,59),(7,161,99,43,143,90,26,133,70),(8,168,110,44,150,82,27,121,62),(9,156,102,45,138,93,28,128,73),(10,163,113,46,145,85,29,116,65),(11,170,105,47,152,77,30,123,76),(12,158,97,48,140,88,31,130,68),(13,165,108,49,147,80,32,118,60),(14,153,100,50,135,91,33,125,71),(15,160,111,51,142,83,34,132,63),(16,167,103,52,149,94,35,120,74),(17,155,114,53,137,86,36,127,66),(18,162,106,54,144,78,37,115,58),(19,169,98,55,151,89,38,122,69)]])
C19⋊2C9 is a maximal subgroup of
C57.C6
Matrix representation of C19⋊2C9 ►in GL3(𝔽7) generated by
2 | 5 | 2 |
2 | 2 | 0 |
0 | 4 | 6 |
2 | 2 | 4 |
3 | 0 | 2 |
1 | 0 | 5 |
G:=sub<GL(3,GF(7))| [2,2,0,5,2,4,2,0,6],[2,3,1,2,0,0,4,2,5] >;
C19⋊2C9 in GAP, Magma, Sage, TeX
C_{19}\rtimes_2C_9
% in TeX
G:=Group("C19:2C9");
// GroupNames label
G:=SmallGroup(171,1);
// by ID
G=gap.SmallGroup(171,1);
# by ID
G:=PCGroup([3,-3,-3,-19,9,569]);
// Polycyclic
G:=Group<a,b|a^19=b^9=1,b*a*b^-1=a^11>;
// generators/relations
Export
Subgroup lattice of C19⋊2C9 in TeX
Character table of C19⋊2C9 in TeX