A metacyclic group is an extension of a cyclic group by a cyclic group. All metacyclic groups are supersoluble and in particular monomial. See also metabelian groups.
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C1 | Trivial group | 1 | 1+ | C1 | 1,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2 | Cyclic group | 2 | 1+ | C2 | 2,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3 | Cyclic group; = A3 = triangle rotations | 3 | 1 | C3 | 3,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C4 | Cyclic group; = square rotations | 4 | 1 | C4 | 4,1 |
C22 | Klein 4-group V4 = elementary abelian group of type [2,2]; = rectangle symmetries | 4 | C2^2 | 4,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C5 | Cyclic group; = pentagon rotations | 5 | 1 | C5 | 5,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C6 | Cyclic group; = hexagon rotations | 6 | 1 | C6 | 6,2 |
S3 | Symmetric group on 3 letters; = D3 = GL2(F2) = triangle symmetries = 1st non-abelian group | 3 | 2+ | S3 | 6,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C7 | Cyclic group | 7 | 1 | C7 | 7,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C8 | Cyclic group | 8 | 1 | C8 | 8,1 |
D4 | Dihedral group; = He2 = AΣL1(F4) = 2+ 1+2 = square symmetries | 4 | 2+ | D4 | 8,3 |
Q8 | Quaternion group; = C4.C2 = Dic2 = 2- 1+2 | 8 | 2- | Q8 | 8,4 |
C2xC4 | Abelian group of type [2,4] | 8 | C2xC4 | 8,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C9 | Cyclic group | 9 | 1 | C9 | 9,1 |
C32 | Elementary abelian group of type [3,3] | 9 | C3^2 | 9,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C10 | Cyclic group | 10 | 1 | C10 | 10,2 |
D5 | Dihedral group; = pentagon symmetries | 5 | 2+ | D5 | 10,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C11 | Cyclic group | 11 | 1 | C11 | 11,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C12 | Cyclic group | 12 | 1 | C12 | 12,2 |
D6 | Dihedral group; = C2xS3 = hexagon symmetries | 6 | 2+ | D6 | 12,4 |
Dic3 | Dicyclic group; = C3:C4 | 12 | 2- | Dic3 | 12,1 |
C2xC6 | Abelian group of type [2,6] | 12 | C2xC6 | 12,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C13 | Cyclic group | 13 | 1 | C13 | 13,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C14 | Cyclic group | 14 | 1 | C14 | 14,2 |
D7 | Dihedral group | 7 | 2+ | D7 | 14,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C15 | Cyclic group | 15 | 1 | C15 | 15,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C16 | Cyclic group | 16 | 1 | C16 | 16,1 |
D8 | Dihedral group | 8 | 2+ | D8 | 16,7 |
Q16 | Generalised quaternion group; = C8.C2 = Dic4 | 16 | 2- | Q16 | 16,9 |
SD16 | Semidihedral group; = Q8:C2 = QD16 | 8 | 2 | SD16 | 16,8 |
M4(2) | Modular maximal-cyclic group; = C8:3C2 | 8 | 2 | M4(2) | 16,6 |
C4:C4 | The semidirect product of C4 and C4 acting via C4/C2=C2 | 16 | C4:C4 | 16,4 | |
C42 | Abelian group of type [4,4] | 16 | C4^2 | 16,2 | |
C2xC8 | Abelian group of type [2,8] | 16 | C2xC8 | 16,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C17 | Cyclic group | 17 | 1 | C17 | 17,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C18 | Cyclic group | 18 | 1 | C18 | 18,2 |
D9 | Dihedral group | 9 | 2+ | D9 | 18,1 |
C3xC6 | Abelian group of type [3,6] | 18 | C3xC6 | 18,5 | |
C3xS3 | Direct product of C3 and S3; = U2(F2) | 6 | 2 | C3xS3 | 18,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C19 | Cyclic group | 19 | 1 | C19 | 19,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C20 | Cyclic group | 20 | 1 | C20 | 20,2 |
D10 | Dihedral group; = C2xD5 | 10 | 2+ | D10 | 20,4 |
F5 | Frobenius group; = C5:C4 = AGL1(F5) = Aut(D5) = Hol(C5) = Sz(2) | 5 | 4+ | F5 | 20,3 |
Dic5 | Dicyclic group; = C5:2C4 | 20 | 2- | Dic5 | 20,1 |
C2xC10 | Abelian group of type [2,10] | 20 | C2xC10 | 20,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C21 | Cyclic group | 21 | 1 | C21 | 21,2 |
C7:C3 | The semidirect product of C7 and C3 acting faithfully | 7 | 3 | C7:C3 | 21,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C22 | Cyclic group | 22 | 1 | C22 | 22,2 |
D11 | Dihedral group | 11 | 2+ | D11 | 22,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C23 | Cyclic group | 23 | 1 | C23 | 23,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C24 | Cyclic group | 24 | 1 | C24 | 24,2 |
D12 | Dihedral group | 12 | 2+ | D12 | 24,6 |
Dic6 | Dicyclic group; = C3:Q8 | 24 | 2- | Dic6 | 24,4 |
C3:C8 | The semidirect product of C3 and C8 acting via C8/C4=C2 | 24 | 2 | C3:C8 | 24,1 |
C2xC12 | Abelian group of type [2,12] | 24 | C2xC12 | 24,9 | |
C4xS3 | Direct product of C4 and S3 | 12 | 2 | C4xS3 | 24,5 |
C3xD4 | Direct product of C3 and D4 | 12 | 2 | C3xD4 | 24,10 |
C3xQ8 | Direct product of C3 and Q8 | 24 | 2 | C3xQ8 | 24,11 |
C2xDic3 | Direct product of C2 and Dic3 | 24 | C2xDic3 | 24,7 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C25 | Cyclic group | 25 | 1 | C25 | 25,1 |
C52 | Elementary abelian group of type [5,5] | 25 | C5^2 | 25,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C26 | Cyclic group | 26 | 1 | C26 | 26,2 |
D13 | Dihedral group | 13 | 2+ | D13 | 26,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C27 | Cyclic group | 27 | 1 | C27 | 27,1 |
3- 1+2 | Extraspecial group | 9 | 3 | ES-(3,1) | 27,4 |
C3xC9 | Abelian group of type [3,9] | 27 | C3xC9 | 27,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C28 | Cyclic group | 28 | 1 | C28 | 28,2 |
D14 | Dihedral group; = C2xD7 | 14 | 2+ | D14 | 28,3 |
Dic7 | Dicyclic group; = C7:C4 | 28 | 2- | Dic7 | 28,1 |
C2xC14 | Abelian group of type [2,14] | 28 | C2xC14 | 28,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C29 | Cyclic group | 29 | 1 | C29 | 29,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C30 | Cyclic group | 30 | 1 | C30 | 30,4 |
D15 | Dihedral group | 15 | 2+ | D15 | 30,3 |
C5xS3 | Direct product of C5 and S3 | 15 | 2 | C5xS3 | 30,1 |
C3xD5 | Direct product of C3 and D5 | 15 | 2 | C3xD5 | 30,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C31 | Cyclic group | 31 | 1 | C31 | 31,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C32 | Cyclic group | 32 | 1 | C32 | 32,1 |
D16 | Dihedral group | 16 | 2+ | D16 | 32,18 |
Q32 | Generalised quaternion group; = C16.C2 = Dic8 | 32 | 2- | Q32 | 32,20 |
SD32 | Semidihedral group; = C16:2C2 = QD32 | 16 | 2 | SD32 | 32,19 |
M5(2) | Modular maximal-cyclic group; = C16:3C2 | 16 | 2 | M5(2) | 32,17 |
C4:C8 | The semidirect product of C4 and C8 acting via C8/C4=C2 | 32 | C4:C8 | 32,12 | |
C8:C4 | 3rd semidirect product of C8 and C4 acting via C4/C2=C2 | 32 | C8:C4 | 32,4 | |
C8.C4 | 1st non-split extension by C8 of C4 acting via C4/C2=C2 | 16 | 2 | C8.C4 | 32,15 |
C2.D8 | 2nd central extension by C2 of D8 | 32 | C2.D8 | 32,14 | |
C4.Q8 | 1st non-split extension by C4 of Q8 acting via Q8/C4=C2 | 32 | C4.Q8 | 32,13 | |
C4xC8 | Abelian group of type [4,8] | 32 | C4xC8 | 32,3 | |
C2xC16 | Abelian group of type [2,16] | 32 | C2xC16 | 32,16 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C33 | Cyclic group | 33 | 1 | C33 | 33,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C34 | Cyclic group | 34 | 1 | C34 | 34,2 |
D17 | Dihedral group | 17 | 2+ | D17 | 34,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C35 | Cyclic group | 35 | 1 | C35 | 35,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C36 | Cyclic group | 36 | 1 | C36 | 36,2 |
D18 | Dihedral group; = C2xD9 | 18 | 2+ | D18 | 36,4 |
Dic9 | Dicyclic group; = C9:C4 | 36 | 2- | Dic9 | 36,1 |
C62 | Abelian group of type [6,6] | 36 | C6^2 | 36,14 | |
C2xC18 | Abelian group of type [2,18] | 36 | C2xC18 | 36,5 | |
C3xC12 | Abelian group of type [3,12] | 36 | C3xC12 | 36,8 | |
S3xC6 | Direct product of C6 and S3 | 12 | 2 | S3xC6 | 36,12 |
C3xDic3 | Direct product of C3 and Dic3 | 12 | 2 | C3xDic3 | 36,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C37 | Cyclic group | 37 | 1 | C37 | 37,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C38 | Cyclic group | 38 | 1 | C38 | 38,2 |
D19 | Dihedral group | 19 | 2+ | D19 | 38,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C39 | Cyclic group | 39 | 1 | C39 | 39,2 |
C13:C3 | The semidirect product of C13 and C3 acting faithfully | 13 | 3 | C13:C3 | 39,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C40 | Cyclic group | 40 | 1 | C40 | 40,2 |
D20 | Dihedral group | 20 | 2+ | D20 | 40,6 |
Dic10 | Dicyclic group; = C5:Q8 | 40 | 2- | Dic10 | 40,4 |
C5:C8 | The semidirect product of C5 and C8 acting via C8/C2=C4 | 40 | 4- | C5:C8 | 40,3 |
C5:2C8 | The semidirect product of C5 and C8 acting via C8/C4=C2 | 40 | 2 | C5:2C8 | 40,1 |
C2xC20 | Abelian group of type [2,20] | 40 | C2xC20 | 40,9 | |
C2xF5 | Direct product of C2 and F5; = Aut(D10) = Hol(C10) | 10 | 4+ | C2xF5 | 40,12 |
C4xD5 | Direct product of C4 and D5 | 20 | 2 | C4xD5 | 40,5 |
C5xD4 | Direct product of C5 and D4 | 20 | 2 | C5xD4 | 40,10 |
C5xQ8 | Direct product of C5 and Q8 | 40 | 2 | C5xQ8 | 40,11 |
C2xDic5 | Direct product of C2 and Dic5 | 40 | C2xDic5 | 40,7 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C41 | Cyclic group | 41 | 1 | C41 | 41,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C42 | Cyclic group | 42 | 1 | C42 | 42,6 |
D21 | Dihedral group | 21 | 2+ | D21 | 42,5 |
F7 | Frobenius group; = C7:C6 = AGL1(F7) = Aut(D7) = Hol(C7) | 7 | 6+ | F7 | 42,1 |
S3xC7 | Direct product of C7 and S3 | 21 | 2 | S3xC7 | 42,3 |
C3xD7 | Direct product of C3 and D7 | 21 | 2 | C3xD7 | 42,4 |
C2xC7:C3 | Direct product of C2 and C7:C3 | 14 | 3 | C2xC7:C3 | 42,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C43 | Cyclic group | 43 | 1 | C43 | 43,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C44 | Cyclic group | 44 | 1 | C44 | 44,2 |
D22 | Dihedral group; = C2xD11 | 22 | 2+ | D22 | 44,3 |
Dic11 | Dicyclic group; = C11:C4 | 44 | 2- | Dic11 | 44,1 |
C2xC22 | Abelian group of type [2,22] | 44 | C2xC22 | 44,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C45 | Cyclic group | 45 | 1 | C45 | 45,1 |
C3xC15 | Abelian group of type [3,15] | 45 | C3xC15 | 45,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C46 | Cyclic group | 46 | 1 | C46 | 46,2 |
D23 | Dihedral group | 23 | 2+ | D23 | 46,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C47 | Cyclic group | 47 | 1 | C47 | 47,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C48 | Cyclic group | 48 | 1 | C48 | 48,2 |
D24 | Dihedral group | 24 | 2+ | D24 | 48,7 |
Dic12 | Dicyclic group; = C3:1Q16 | 48 | 2- | Dic12 | 48,8 |
C8:S3 | 3rd semidirect product of C8 and S3 acting via S3/C3=C2 | 24 | 2 | C8:S3 | 48,5 |
C24:C2 | 2nd semidirect product of C24 and C2 acting faithfully | 24 | 2 | C24:C2 | 48,6 |
C3:C16 | The semidirect product of C3 and C16 acting via C16/C8=C2 | 48 | 2 | C3:C16 | 48,1 |
C4:Dic3 | The semidirect product of C4 and Dic3 acting via Dic3/C6=C2 | 48 | C4:Dic3 | 48,13 | |
C4.Dic3 | The non-split extension by C4 of Dic3 acting via Dic3/C6=C2 | 24 | 2 | C4.Dic3 | 48,10 |
C4xC12 | Abelian group of type [4,12] | 48 | C4xC12 | 48,20 | |
C2xC24 | Abelian group of type [2,24] | 48 | C2xC24 | 48,23 | |
S3xC8 | Direct product of C8 and S3 | 24 | 2 | S3xC8 | 48,4 |
C3xD8 | Direct product of C3 and D8 | 24 | 2 | C3xD8 | 48,25 |
C3xSD16 | Direct product of C3 and SD16 | 24 | 2 | C3xSD16 | 48,26 |
C3xM4(2) | Direct product of C3 and M4(2) | 24 | 2 | C3xM4(2) | 48,24 |
C3xQ16 | Direct product of C3 and Q16 | 48 | 2 | C3xQ16 | 48,27 |
C4xDic3 | Direct product of C4 and Dic3 | 48 | C4xDic3 | 48,11 | |
C2xC3:C8 | Direct product of C2 and C3:C8 | 48 | C2xC3:C8 | 48,9 | |
C3xC4:C4 | Direct product of C3 and C4:C4 | 48 | C3xC4:C4 | 48,22 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C49 | Cyclic group | 49 | 1 | C49 | 49,1 |
C72 | Elementary abelian group of type [7,7] | 49 | C7^2 | 49,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C50 | Cyclic group | 50 | 1 | C50 | 50,2 |
D25 | Dihedral group | 25 | 2+ | D25 | 50,1 |
C5xC10 | Abelian group of type [5,10] | 50 | C5xC10 | 50,5 | |
C5xD5 | Direct product of C5 and D5; = AΣL1(F25) | 10 | 2 | C5xD5 | 50,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C51 | Cyclic group | 51 | 1 | C51 | 51,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C52 | Cyclic group | 52 | 1 | C52 | 52,2 |
D26 | Dihedral group; = C2xD13 | 26 | 2+ | D26 | 52,4 |
Dic13 | Dicyclic group; = C13:2C4 | 52 | 2- | Dic13 | 52,1 |
C13:C4 | The semidirect product of C13 and C4 acting faithfully | 13 | 4+ | C13:C4 | 52,3 |
C2xC26 | Abelian group of type [2,26] | 52 | C2xC26 | 52,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C53 | Cyclic group | 53 | 1 | C53 | 53,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C54 | Cyclic group | 54 | 1 | C54 | 54,2 |
D27 | Dihedral group | 27 | 2+ | D27 | 54,1 |
C9:C6 | The semidirect product of C9 and C6 acting faithfully; = Aut(D9) = Hol(C9) | 9 | 6+ | C9:C6 | 54,6 |
C3xC18 | Abelian group of type [3,18] | 54 | C3xC18 | 54,9 | |
S3xC9 | Direct product of C9 and S3 | 18 | 2 | S3xC9 | 54,4 |
C3xD9 | Direct product of C3 and D9 | 18 | 2 | C3xD9 | 54,3 |
C2x3- 1+2 | Direct product of C2 and 3- 1+2 | 18 | 3 | C2xES-(3,1) | 54,11 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C55 | Cyclic group | 55 | 1 | C55 | 55,2 |
C11:C5 | The semidirect product of C11 and C5 acting faithfully | 11 | 5 | C11:C5 | 55,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C56 | Cyclic group | 56 | 1 | C56 | 56,2 |
D28 | Dihedral group | 28 | 2+ | D28 | 56,5 |
Dic14 | Dicyclic group; = C7:Q8 | 56 | 2- | Dic14 | 56,3 |
C7:C8 | The semidirect product of C7 and C8 acting via C8/C4=C2 | 56 | 2 | C7:C8 | 56,1 |
C2xC28 | Abelian group of type [2,28] | 56 | C2xC28 | 56,8 | |
C4xD7 | Direct product of C4 and D7 | 28 | 2 | C4xD7 | 56,4 |
C7xD4 | Direct product of C7 and D4 | 28 | 2 | C7xD4 | 56,9 |
C7xQ8 | Direct product of C7 and Q8 | 56 | 2 | C7xQ8 | 56,10 |
C2xDic7 | Direct product of C2 and Dic7 | 56 | C2xDic7 | 56,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C57 | Cyclic group | 57 | 1 | C57 | 57,2 |
C19:C3 | The semidirect product of C19 and C3 acting faithfully | 19 | 3 | C19:C3 | 57,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C58 | Cyclic group | 58 | 1 | C58 | 58,2 |
D29 | Dihedral group | 29 | 2+ | D29 | 58,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C59 | Cyclic group | 59 | 1 | C59 | 59,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C60 | Cyclic group | 60 | 1 | C60 | 60,4 |
D30 | Dihedral group; = C2xD15 | 30 | 2+ | D30 | 60,12 |
Dic15 | Dicyclic group; = C3:Dic5 | 60 | 2- | Dic15 | 60,3 |
C3:F5 | The semidirect product of C3 and F5 acting via F5/D5=C2 | 15 | 4 | C3:F5 | 60,7 |
C2xC30 | Abelian group of type [2,30] | 60 | C2xC30 | 60,13 | |
C3xF5 | Direct product of C3 and F5 | 15 | 4 | C3xF5 | 60,6 |
C6xD5 | Direct product of C6 and D5 | 30 | 2 | C6xD5 | 60,10 |
S3xC10 | Direct product of C10 and S3 | 30 | 2 | S3xC10 | 60,11 |
C5xDic3 | Direct product of C5 and Dic3 | 60 | 2 | C5xDic3 | 60,1 |
C3xDic5 | Direct product of C3 and Dic5 | 60 | 2 | C3xDic5 | 60,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C61 | Cyclic group | 61 | 1 | C61 | 61,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C62 | Cyclic group | 62 | 1 | C62 | 62,2 |
D31 | Dihedral group | 31 | 2+ | D31 | 62,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C63 | Cyclic group | 63 | 1 | C63 | 63,2 |
C7:C9 | The semidirect product of C7 and C9 acting via C9/C3=C3 | 63 | 3 | C7:C9 | 63,1 |
C3xC21 | Abelian group of type [3,21] | 63 | C3xC21 | 63,4 | |
C3xC7:C3 | Direct product of C3 and C7:C3 | 21 | 3 | C3xC7:C3 | 63,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C64 | Cyclic group | 64 | 1 | C64 | 64,1 |
D32 | Dihedral group | 32 | 2+ | D32 | 64,52 |
Q64 | Generalised quaternion group; = C32.C2 = Dic16 | 64 | 2- | Q64 | 64,54 |
SD64 | Semidihedral group; = C32:2C2 = QD64 | 32 | 2 | SD64 | 64,53 |
M6(2) | Modular maximal-cyclic group; = C32:3C2 | 32 | 2 | M6(2) | 64,51 |
C16:C4 | 2nd semidirect product of C16 and C4 acting faithfully | 16 | 4 | C16:C4 | 64,28 |
C4:C16 | The semidirect product of C4 and C16 acting via C16/C8=C2 | 64 | C4:C16 | 64,44 | |
C8:C8 | 3rd semidirect product of C8 and C8 acting via C8/C4=C2 | 64 | C8:C8 | 64,3 | |
C8:2C8 | 2nd semidirect product of C8 and C8 acting via C8/C4=C2 | 64 | C8:2C8 | 64,15 | |
C8:1C8 | 1st semidirect product of C8 and C8 acting via C8/C4=C2 | 64 | C8:1C8 | 64,16 | |
C16:5C4 | 3rd semidirect product of C16 and C4 acting via C4/C2=C2 | 64 | C16:5C4 | 64,27 | |
C16:3C4 | 1st semidirect product of C16 and C4 acting via C4/C2=C2 | 64 | C16:3C4 | 64,47 | |
C16:4C4 | 2nd semidirect product of C16 and C4 acting via C4/C2=C2 | 64 | C16:4C4 | 64,48 | |
C8.Q8 | The non-split extension by C8 of Q8 acting via Q8/C2=C22 | 16 | 4 | C8.Q8 | 64,46 |
C8.C8 | 1st non-split extension by C8 of C8 acting via C8/C4=C2 | 16 | 2 | C8.C8 | 64,45 |
C8.4Q8 | 3rd non-split extension by C8 of Q8 acting via Q8/C4=C2 | 32 | 2 | C8.4Q8 | 64,49 |
C82 | Abelian group of type [8,8] | 64 | C8^2 | 64,2 | |
C4xC16 | Abelian group of type [4,16] | 64 | C4xC16 | 64,26 | |
C2xC32 | Abelian group of type [2,32] | 64 | C2xC32 | 64,50 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C65 | Cyclic group | 65 | 1 | C65 | 65,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C66 | Cyclic group | 66 | 1 | C66 | 66,4 |
D33 | Dihedral group | 33 | 2+ | D33 | 66,3 |
S3xC11 | Direct product of C11 and S3 | 33 | 2 | S3xC11 | 66,1 |
C3xD11 | Direct product of C3 and D11 | 33 | 2 | C3xD11 | 66,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C67 | Cyclic group | 67 | 1 | C67 | 67,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C68 | Cyclic group | 68 | 1 | C68 | 68,2 |
D34 | Dihedral group; = C2xD17 | 34 | 2+ | D34 | 68,4 |
Dic17 | Dicyclic group; = C17:2C4 | 68 | 2- | Dic17 | 68,1 |
C17:C4 | The semidirect product of C17 and C4 acting faithfully | 17 | 4+ | C17:C4 | 68,3 |
C2xC34 | Abelian group of type [2,34] | 68 | C2xC34 | 68,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C69 | Cyclic group | 69 | 1 | C69 | 69,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C70 | Cyclic group | 70 | 1 | C70 | 70,4 |
D35 | Dihedral group | 35 | 2+ | D35 | 70,3 |
C7xD5 | Direct product of C7 and D5 | 35 | 2 | C7xD5 | 70,1 |
C5xD7 | Direct product of C5 and D7 | 35 | 2 | C5xD7 | 70,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C71 | Cyclic group | 71 | 1 | C71 | 71,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C72 | Cyclic group | 72 | 1 | C72 | 72,2 |
D36 | Dihedral group | 36 | 2+ | D36 | 72,6 |
Dic18 | Dicyclic group; = C9:Q8 | 72 | 2- | Dic18 | 72,4 |
C9:C8 | The semidirect product of C9 and C8 acting via C8/C4=C2 | 72 | 2 | C9:C8 | 72,1 |
C2xC36 | Abelian group of type [2,36] | 72 | C2xC36 | 72,9 | |
C3xC24 | Abelian group of type [3,24] | 72 | C3xC24 | 72,14 | |
C6xC12 | Abelian group of type [6,12] | 72 | C6xC12 | 72,36 | |
S3xC12 | Direct product of C12 and S3 | 24 | 2 | S3xC12 | 72,27 |
C3xD12 | Direct product of C3 and D12 | 24 | 2 | C3xD12 | 72,28 |
C3xDic6 | Direct product of C3 and Dic6 | 24 | 2 | C3xDic6 | 72,26 |
C6xDic3 | Direct product of C6 and Dic3 | 24 | C6xDic3 | 72,29 | |
C4xD9 | Direct product of C4 and D9 | 36 | 2 | C4xD9 | 72,5 |
D4xC9 | Direct product of C9 and D4 | 36 | 2 | D4xC9 | 72,10 |
D4xC32 | Direct product of C32 and D4 | 36 | D4xC3^2 | 72,37 | |
Q8xC9 | Direct product of C9 and Q8 | 72 | 2 | Q8xC9 | 72,11 |
C2xDic9 | Direct product of C2 and Dic9 | 72 | C2xDic9 | 72,7 | |
Q8xC32 | Direct product of C32 and Q8 | 72 | Q8xC3^2 | 72,38 | |
C3xC3:C8 | Direct product of C3 and C3:C8 | 24 | 2 | C3xC3:C8 | 72,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C73 | Cyclic group | 73 | 1 | C73 | 73,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C74 | Cyclic group | 74 | 1 | C74 | 74,2 |
D37 | Dihedral group | 37 | 2+ | D37 | 74,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C75 | Cyclic group | 75 | 1 | C75 | 75,1 |
C5xC15 | Abelian group of type [5,15] | 75 | C5xC15 | 75,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C76 | Cyclic group | 76 | 1 | C76 | 76,2 |
D38 | Dihedral group; = C2xD19 | 38 | 2+ | D38 | 76,3 |
Dic19 | Dicyclic group; = C19:C4 | 76 | 2- | Dic19 | 76,1 |
C2xC38 | Abelian group of type [2,38] | 76 | C2xC38 | 76,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C77 | Cyclic group | 77 | 1 | C77 | 77,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C78 | Cyclic group | 78 | 1 | C78 | 78,6 |
D39 | Dihedral group | 39 | 2+ | D39 | 78,5 |
C13:C6 | The semidirect product of C13 and C6 acting faithfully | 13 | 6+ | C13:C6 | 78,1 |
S3xC13 | Direct product of C13 and S3 | 39 | 2 | S3xC13 | 78,3 |
C3xD13 | Direct product of C3 and D13 | 39 | 2 | C3xD13 | 78,4 |
C2xC13:C3 | Direct product of C2 and C13:C3 | 26 | 3 | C2xC13:C3 | 78,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C79 | Cyclic group | 79 | 1 | C79 | 79,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C81 | Cyclic group | 81 | 1 | C81 | 81,1 |
C27:C3 | The semidirect product of C27 and C3 acting faithfully | 27 | 3 | C27:C3 | 81,6 |
C9:C9 | The semidirect product of C9 and C9 acting via C9/C3=C3 | 81 | C9:C9 | 81,4 | |
C92 | Abelian group of type [9,9] | 81 | C9^2 | 81,2 | |
C3xC27 | Abelian group of type [3,27] | 81 | C3xC27 | 81,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C82 | Cyclic group | 82 | 1 | C82 | 82,2 |
D41 | Dihedral group | 41 | 2+ | D41 | 82,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C83 | Cyclic group | 83 | 1 | C83 | 83,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C84 | Cyclic group | 84 | 1 | C84 | 84,6 |
D42 | Dihedral group; = C2xD21 | 42 | 2+ | D42 | 84,14 |
Dic21 | Dicyclic group; = C3:Dic7 | 84 | 2- | Dic21 | 84,5 |
C7:C12 | The semidirect product of C7 and C12 acting via C12/C2=C6 | 28 | 6- | C7:C12 | 84,1 |
C2xC42 | Abelian group of type [2,42] | 84 | C2xC42 | 84,15 | |
C2xF7 | Direct product of C2 and F7; = Aut(D14) = Hol(C14) | 14 | 6+ | C2xF7 | 84,7 |
C6xD7 | Direct product of C6 and D7 | 42 | 2 | C6xD7 | 84,12 |
S3xC14 | Direct product of C14 and S3 | 42 | 2 | S3xC14 | 84,13 |
C7xDic3 | Direct product of C7 and Dic3 | 84 | 2 | C7xDic3 | 84,3 |
C3xDic7 | Direct product of C3 and Dic7 | 84 | 2 | C3xDic7 | 84,4 |
C4xC7:C3 | Direct product of C4 and C7:C3 | 28 | 3 | C4xC7:C3 | 84,2 |
C22xC7:C3 | Direct product of C22 and C7:C3 | 28 | C2^2xC7:C3 | 84,9 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C85 | Cyclic group | 85 | 1 | C85 | 85,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C86 | Cyclic group | 86 | 1 | C86 | 86,2 |
D43 | Dihedral group | 43 | 2+ | D43 | 86,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C87 | Cyclic group | 87 | 1 | C87 | 87,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C88 | Cyclic group | 88 | 1 | C88 | 88,2 |
D44 | Dihedral group | 44 | 2+ | D44 | 88,5 |
Dic22 | Dicyclic group; = C11:Q8 | 88 | 2- | Dic22 | 88,3 |
C11:C8 | The semidirect product of C11 and C8 acting via C8/C4=C2 | 88 | 2 | C11:C8 | 88,1 |
C2xC44 | Abelian group of type [2,44] | 88 | C2xC44 | 88,8 | |
C4xD11 | Direct product of C4 and D11 | 44 | 2 | C4xD11 | 88,4 |
D4xC11 | Direct product of C11 and D4 | 44 | 2 | D4xC11 | 88,9 |
Q8xC11 | Direct product of C11 and Q8 | 88 | 2 | Q8xC11 | 88,10 |
C2xDic11 | Direct product of C2 and Dic11 | 88 | C2xDic11 | 88,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C89 | Cyclic group | 89 | 1 | C89 | 89,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C90 | Cyclic group | 90 | 1 | C90 | 90,4 |
D45 | Dihedral group | 45 | 2+ | D45 | 90,3 |
C3xC30 | Abelian group of type [3,30] | 90 | C3xC30 | 90,10 | |
S3xC15 | Direct product of C15 and S3 | 30 | 2 | S3xC15 | 90,6 |
C3xD15 | Direct product of C3 and D15 | 30 | 2 | C3xD15 | 90,7 |
C5xD9 | Direct product of C5 and D9 | 45 | 2 | C5xD9 | 90,1 |
C9xD5 | Direct product of C9 and D5 | 45 | 2 | C9xD5 | 90,2 |
C32xD5 | Direct product of C32 and D5 | 45 | C3^2xD5 | 90,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C91 | Cyclic group | 91 | 1 | C91 | 91,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C92 | Cyclic group | 92 | 1 | C92 | 92,2 |
D46 | Dihedral group; = C2xD23 | 46 | 2+ | D46 | 92,3 |
Dic23 | Dicyclic group; = C23:C4 | 92 | 2- | Dic23 | 92,1 |
C2xC46 | Abelian group of type [2,46] | 92 | C2xC46 | 92,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C93 | Cyclic group | 93 | 1 | C93 | 93,2 |
C31:C3 | The semidirect product of C31 and C3 acting faithfully | 31 | 3 | C31:C3 | 93,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C94 | Cyclic group | 94 | 1 | C94 | 94,2 |
D47 | Dihedral group | 47 | 2+ | D47 | 94,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C95 | Cyclic group | 95 | 1 | C95 | 95,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C97 | Cyclic group | 97 | 1 | C97 | 97,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C98 | Cyclic group | 98 | 1 | C98 | 98,2 |
D49 | Dihedral group | 49 | 2+ | D49 | 98,1 |
C7xC14 | Abelian group of type [7,14] | 98 | C7xC14 | 98,5 | |
C7xD7 | Direct product of C7 and D7; = AΣL1(F49) | 14 | 2 | C7xD7 | 98,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C99 | Cyclic group | 99 | 1 | C99 | 99,1 |
C3xC33 | Abelian group of type [3,33] | 99 | C3xC33 | 99,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C100 | Cyclic group | 100 | 1 | C100 | 100,2 |
D50 | Dihedral group; = C2xD25 | 50 | 2+ | D50 | 100,4 |
Dic25 | Dicyclic group; = C25:2C4 | 100 | 2- | Dic25 | 100,1 |
C25:C4 | The semidirect product of C25 and C4 acting faithfully | 25 | 4+ | C25:C4 | 100,3 |
C102 | Abelian group of type [10,10] | 100 | C10^2 | 100,16 | |
C2xC50 | Abelian group of type [2,50] | 100 | C2xC50 | 100,5 | |
C5xC20 | Abelian group of type [5,20] | 100 | C5xC20 | 100,8 | |
C5xF5 | Direct product of C5 and F5 | 20 | 4 | C5xF5 | 100,9 |
D5xC10 | Direct product of C10 and D5 | 20 | 2 | D5xC10 | 100,14 |
C5xDic5 | Direct product of C5 and Dic5 | 20 | 2 | C5xDic5 | 100,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C101 | Cyclic group | 101 | 1 | C101 | 101,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C102 | Cyclic group | 102 | 1 | C102 | 102,4 |
D51 | Dihedral group | 51 | 2+ | D51 | 102,3 |
S3xC17 | Direct product of C17 and S3 | 51 | 2 | S3xC17 | 102,1 |
C3xD17 | Direct product of C3 and D17 | 51 | 2 | C3xD17 | 102,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C103 | Cyclic group | 103 | 1 | C103 | 103,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C104 | Cyclic group | 104 | 1 | C104 | 104,2 |
D52 | Dihedral group | 52 | 2+ | D52 | 104,6 |
Dic26 | Dicyclic group; = C13:Q8 | 104 | 2- | Dic26 | 104,4 |
C13:C8 | The semidirect product of C13 and C8 acting via C8/C2=C4 | 104 | 4- | C13:C8 | 104,3 |
C13:2C8 | The semidirect product of C13 and C8 acting via C8/C4=C2 | 104 | 2 | C13:2C8 | 104,1 |
C2xC52 | Abelian group of type [2,52] | 104 | C2xC52 | 104,9 | |
C4xD13 | Direct product of C4 and D13 | 52 | 2 | C4xD13 | 104,5 |
D4xC13 | Direct product of C13 and D4 | 52 | 2 | D4xC13 | 104,10 |
Q8xC13 | Direct product of C13 and Q8 | 104 | 2 | Q8xC13 | 104,11 |
C2xDic13 | Direct product of C2 and Dic13 | 104 | C2xDic13 | 104,7 | |
C2xC13:C4 | Direct product of C2 and C13:C4 | 26 | 4+ | C2xC13:C4 | 104,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C105 | Cyclic group | 105 | 1 | C105 | 105,2 |
C5xC7:C3 | Direct product of C5 and C7:C3 | 35 | 3 | C5xC7:C3 | 105,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C106 | Cyclic group | 106 | 1 | C106 | 106,2 |
D53 | Dihedral group | 53 | 2+ | D53 | 106,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C107 | Cyclic group | 107 | 1 | C107 | 107,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C108 | Cyclic group | 108 | 1 | C108 | 108,2 |
D54 | Dihedral group; = C2xD27 | 54 | 2+ | D54 | 108,4 |
Dic27 | Dicyclic group; = C27:C4 | 108 | 2- | Dic27 | 108,1 |
C9:C12 | The semidirect product of C9 and C12 acting via C12/C2=C6 | 36 | 6- | C9:C12 | 108,9 |
C2xC54 | Abelian group of type [2,54] | 108 | C2xC54 | 108,5 | |
C3xC36 | Abelian group of type [3,36] | 108 | C3xC36 | 108,12 | |
C6xC18 | Abelian group of type [6,18] | 108 | C6xC18 | 108,29 | |
C6xD9 | Direct product of C6 and D9 | 36 | 2 | C6xD9 | 108,23 |
S3xC18 | Direct product of C18 and S3 | 36 | 2 | S3xC18 | 108,24 |
C3xDic9 | Direct product of C3 and Dic9 | 36 | 2 | C3xDic9 | 108,6 |
C9xDic3 | Direct product of C9 and Dic3 | 36 | 2 | C9xDic3 | 108,7 |
C4x3- 1+2 | Direct product of C4 and 3- 1+2 | 36 | 3 | C4xES-(3,1) | 108,14 |
C22x3- 1+2 | Direct product of C22 and 3- 1+2 | 36 | C2^2xES-(3,1) | 108,31 | |
C2xC9:C6 | Direct product of C2 and C9:C6; = Aut(D18) = Hol(C18) | 18 | 6+ | C2xC9:C6 | 108,26 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C109 | Cyclic group | 109 | 1 | C109 | 109,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C110 | Cyclic group | 110 | 1 | C110 | 110,6 |
D55 | Dihedral group | 55 | 2+ | D55 | 110,5 |
F11 | Frobenius group; = C11:C10 = AGL1(F11) = Aut(D11) = Hol(C11) | 11 | 10+ | F11 | 110,1 |
D5xC11 | Direct product of C11 and D5 | 55 | 2 | D5xC11 | 110,3 |
C5xD11 | Direct product of C5 and D11 | 55 | 2 | C5xD11 | 110,4 |
C2xC11:C5 | Direct product of C2 and C11:C5 | 22 | 5 | C2xC11:C5 | 110,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C111 | Cyclic group | 111 | 1 | C111 | 111,2 |
C37:C3 | The semidirect product of C37 and C3 acting faithfully | 37 | 3 | C37:C3 | 111,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C113 | Cyclic group | 113 | 1 | C113 | 113,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C114 | Cyclic group | 114 | 1 | C114 | 114,6 |
D57 | Dihedral group | 57 | 2+ | D57 | 114,5 |
C19:C6 | The semidirect product of C19 and C6 acting faithfully | 19 | 6+ | C19:C6 | 114,1 |
S3xC19 | Direct product of C19 and S3 | 57 | 2 | S3xC19 | 114,3 |
C3xD19 | Direct product of C3 and D19 | 57 | 2 | C3xD19 | 114,4 |
C2xC19:C3 | Direct product of C2 and C19:C3 | 38 | 3 | C2xC19:C3 | 114,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C115 | Cyclic group | 115 | 1 | C115 | 115,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C116 | Cyclic group | 116 | 1 | C116 | 116,2 |
D58 | Dihedral group; = C2xD29 | 58 | 2+ | D58 | 116,4 |
Dic29 | Dicyclic group; = C29:2C4 | 116 | 2- | Dic29 | 116,1 |
C29:C4 | The semidirect product of C29 and C4 acting faithfully | 29 | 4+ | C29:C4 | 116,3 |
C2xC58 | Abelian group of type [2,58] | 116 | C2xC58 | 116,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C117 | Cyclic group | 117 | 1 | C117 | 117,2 |
C13:C9 | The semidirect product of C13 and C9 acting via C9/C3=C3 | 117 | 3 | C13:C9 | 117,1 |
C3xC39 | Abelian group of type [3,39] | 117 | C3xC39 | 117,4 | |
C3xC13:C3 | Direct product of C3 and C13:C3 | 39 | 3 | C3xC13:C3 | 117,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C118 | Cyclic group | 118 | 1 | C118 | 118,2 |
D59 | Dihedral group | 59 | 2+ | D59 | 118,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C119 | Cyclic group | 119 | 1 | C119 | 119,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C121 | Cyclic group | 121 | 1 | C121 | 121,1 |
C112 | Elementary abelian group of type [11,11] | 121 | C11^2 | 121,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C122 | Cyclic group | 122 | 1 | C122 | 122,2 |
D61 | Dihedral group | 61 | 2+ | D61 | 122,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C123 | Cyclic group | 123 | 1 | C123 | 123,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C124 | Cyclic group | 124 | 1 | C124 | 124,2 |
D62 | Dihedral group; = C2xD31 | 62 | 2+ | D62 | 124,3 |
Dic31 | Dicyclic group; = C31:C4 | 124 | 2- | Dic31 | 124,1 |
C2xC62 | Abelian group of type [2,62] | 124 | C2xC62 | 124,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C125 | Cyclic group | 125 | 1 | C125 | 125,1 |
5- 1+2 | Extraspecial group | 25 | 5 | ES-(5,1) | 125,4 |
C5xC25 | Abelian group of type [5,25] | 125 | C5xC25 | 125,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C126 | Cyclic group | 126 | 1 | C126 | 126,6 |
D63 | Dihedral group | 63 | 2+ | D63 | 126,5 |
C3:F7 | The semidirect product of C3 and F7 acting via F7/C7:C3=C2 | 21 | 6+ | C3:F7 | 126,9 |
C7:C18 | The semidirect product of C7 and C18 acting via C18/C3=C6 | 63 | 6 | C7:C18 | 126,1 |
C3xC42 | Abelian group of type [3,42] | 126 | C3xC42 | 126,16 | |
C3xF7 | Direct product of C3 and F7 | 21 | 6 | C3xF7 | 126,7 |
S3xC21 | Direct product of C21 and S3 | 42 | 2 | S3xC21 | 126,12 |
C3xD21 | Direct product of C3 and D21 | 42 | 2 | C3xD21 | 126,13 |
C7xD9 | Direct product of C7 and D9 | 63 | 2 | C7xD9 | 126,3 |
C9xD7 | Direct product of C9 and D7 | 63 | 2 | C9xD7 | 126,4 |
C32xD7 | Direct product of C32 and D7 | 63 | C3^2xD7 | 126,11 | |
S3xC7:C3 | Direct product of S3 and C7:C3 | 21 | 6 | S3xC7:C3 | 126,8 |
C6xC7:C3 | Direct product of C6 and C7:C3 | 42 | 3 | C6xC7:C3 | 126,10 |
C2xC7:C9 | Direct product of C2 and C7:C9 | 126 | 3 | C2xC7:C9 | 126,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C127 | Cyclic group | 127 | 1 | C127 | 127,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C128 | Cyclic group | 128 | 1 | C128 | 128,1 |
D64 | Dihedral group | 64 | 2+ | D64 | 128,161 |
Q128 | Generalised quaternion group; = C64.C2 = Dic32 | 128 | 2- | Q128 | 128,163 |
SD128 | Semidihedral group; = C64:2C2 = QD128 | 64 | 2 | SD128 | 128,162 |
M7(2) | Modular maximal-cyclic group; = C64:3C2 | 64 | 2 | M7(2) | 128,160 |
C32:C4 | 2nd semidirect product of C32 and C4 acting faithfully | 32 | 4 | C32:C4 | 128,130 |
C4:C32 | The semidirect product of C4 and C32 acting via C32/C16=C2 | 128 | C4:C32 | 128,153 | |
C16:5C8 | 3rd semidirect product of C16 and C8 acting via C8/C4=C2 | 128 | C16:5C8 | 128,43 | |
C8:C16 | 3rd semidirect product of C8 and C16 acting via C16/C8=C2 | 128 | C8:C16 | 128,44 | |
C16:C8 | 2nd semidirect product of C16 and C8 acting via C8/C2=C4 | 128 | C16:C8 | 128,45 | |
C8:2C16 | 2nd semidirect product of C8 and C16 acting via C16/C8=C2 | 128 | C8:2C16 | 128,99 | |
C16:1C8 | 1st semidirect product of C16 and C8 acting via C8/C2=C4 | 128 | C16:1C8 | 128,100 | |
C16:3C8 | 1st semidirect product of C16 and C8 acting via C8/C4=C2 | 128 | C16:3C8 | 128,103 | |
C16:4C8 | 2nd semidirect product of C16 and C8 acting via C8/C4=C2 | 128 | C16:4C8 | 128,104 | |
C32:5C4 | 3rd semidirect product of C32 and C4 acting via C4/C2=C2 | 128 | C32:5C4 | 128,129 | |
C32:3C4 | 1st semidirect product of C32 and C4 acting via C4/C2=C2 | 128 | C32:3C4 | 128,155 | |
C32:4C4 | 2nd semidirect product of C32 and C4 acting via C4/C2=C2 | 128 | C32:4C4 | 128,156 | |
C16.C8 | 1st non-split extension by C16 of C8 acting via C8/C2=C4 | 32 | 4 | C16.C8 | 128,101 |
C16.3C8 | 1st non-split extension by C16 of C8 acting via C8/C4=C2 | 32 | 2 | C16.3C8 | 128,105 |
C8.C16 | 1st non-split extension by C8 of C16 acting via C16/C8=C2 | 32 | 2 | C8.C16 | 128,154 |
C8.Q16 | 2nd non-split extension by C8 of Q16 acting via Q16/C4=C22 | 32 | 4 | C8.Q16 | 128,158 |
C32.C4 | 1st non-split extension by C32 of C4 acting via C4/C2=C2 | 64 | 2 | C32.C4 | 128,157 |
C8.36D8 | 3rd central extension by C8 of D8 | 128 | C8.36D8 | 128,102 | |
C8xC16 | Abelian group of type [8,16] | 128 | C8xC16 | 128,42 | |
C4xC32 | Abelian group of type [4,32] | 128 | C4xC32 | 128,128 | |
C2xC64 | Abelian group of type [2,64] | 128 | C2xC64 | 128,159 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C129 | Cyclic group | 129 | 1 | C129 | 129,2 |
C43:C3 | The semidirect product of C43 and C3 acting faithfully | 43 | 3 | C43:C3 | 129,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C130 | Cyclic group | 130 | 1 | C130 | 130,4 |
D65 | Dihedral group | 65 | 2+ | D65 | 130,3 |
D5xC13 | Direct product of C13 and D5 | 65 | 2 | D5xC13 | 130,1 |
C5xD13 | Direct product of C5 and D13 | 65 | 2 | C5xD13 | 130,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C131 | Cyclic group | 131 | 1 | C131 | 131,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C132 | Cyclic group | 132 | 1 | C132 | 132,4 |
D66 | Dihedral group; = C2xD33 | 66 | 2+ | D66 | 132,9 |
Dic33 | Dicyclic group; = C33:1C4 | 132 | 2- | Dic33 | 132,3 |
C2xC66 | Abelian group of type [2,66] | 132 | C2xC66 | 132,10 | |
S3xC22 | Direct product of C22 and S3 | 66 | 2 | S3xC22 | 132,8 |
C6xD11 | Direct product of C6 and D11 | 66 | 2 | C6xD11 | 132,7 |
C11xDic3 | Direct product of C11 and Dic3 | 132 | 2 | C11xDic3 | 132,1 |
C3xDic11 | Direct product of C3 and Dic11 | 132 | 2 | C3xDic11 | 132,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C133 | Cyclic group | 133 | 1 | C133 | 133,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C134 | Cyclic group | 134 | 1 | C134 | 134,2 |
D67 | Dihedral group | 67 | 2+ | D67 | 134,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C135 | Cyclic group | 135 | 1 | C135 | 135,1 |
C3xC45 | Abelian group of type [3,45] | 135 | C3xC45 | 135,2 | |
C5x3- 1+2 | Direct product of C5 and 3- 1+2 | 45 | 3 | C5xES-(3,1) | 135,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C136 | Cyclic group | 136 | 1 | C136 | 136,2 |
D68 | Dihedral group | 68 | 2+ | D68 | 136,6 |
Dic34 | Dicyclic group; = C17:Q8 | 136 | 2- | Dic34 | 136,4 |
C17:C8 | The semidirect product of C17 and C8 acting faithfully | 17 | 8+ | C17:C8 | 136,12 |
C17:3C8 | The semidirect product of C17 and C8 acting via C8/C4=C2 | 136 | 2 | C17:3C8 | 136,1 |
C17:2C8 | The semidirect product of C17 and C8 acting via C8/C2=C4 | 136 | 4- | C17:2C8 | 136,3 |
C2xC68 | Abelian group of type [2,68] | 136 | C2xC68 | 136,9 | |
C4xD17 | Direct product of C4 and D17 | 68 | 2 | C4xD17 | 136,5 |
D4xC17 | Direct product of C17 and D4 | 68 | 2 | D4xC17 | 136,10 |
Q8xC17 | Direct product of C17 and Q8 | 136 | 2 | Q8xC17 | 136,11 |
C2xDic17 | Direct product of C2 and Dic17 | 136 | C2xDic17 | 136,7 | |
C2xC17:C4 | Direct product of C2 and C17:C4 | 34 | 4+ | C2xC17:C4 | 136,13 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C137 | Cyclic group | 137 | 1 | C137 | 137,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C138 | Cyclic group | 138 | 1 | C138 | 138,4 |
D69 | Dihedral group | 69 | 2+ | D69 | 138,3 |
S3xC23 | Direct product of C23 and S3 | 69 | 2 | S3xC23 | 138,1 |
C3xD23 | Direct product of C3 and D23 | 69 | 2 | C3xD23 | 138,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C139 | Cyclic group | 139 | 1 | C139 | 139,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C140 | Cyclic group | 140 | 1 | C140 | 140,4 |
D70 | Dihedral group; = C2xD35 | 70 | 2+ | D70 | 140,10 |
Dic35 | Dicyclic group; = C7:Dic5 | 140 | 2- | Dic35 | 140,3 |
C7:F5 | The semidirect product of C7 and F5 acting via F5/D5=C2 | 35 | 4 | C7:F5 | 140,6 |
C2xC70 | Abelian group of type [2,70] | 140 | C2xC70 | 140,11 | |
C7xF5 | Direct product of C7 and F5 | 35 | 4 | C7xF5 | 140,5 |
C10xD7 | Direct product of C10 and D7 | 70 | 2 | C10xD7 | 140,8 |
D5xC14 | Direct product of C14 and D5 | 70 | 2 | D5xC14 | 140,9 |
C7xDic5 | Direct product of C7 and Dic5 | 140 | 2 | C7xDic5 | 140,1 |
C5xDic7 | Direct product of C5 and Dic7 | 140 | 2 | C5xDic7 | 140,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C141 | Cyclic group | 141 | 1 | C141 | 141,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C142 | Cyclic group | 142 | 1 | C142 | 142,2 |
D71 | Dihedral group | 71 | 2+ | D71 | 142,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C143 | Cyclic group | 143 | 1 | C143 | 143,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C145 | Cyclic group | 145 | 1 | C145 | 145,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C146 | Cyclic group | 146 | 1 | C146 | 146,2 |
D73 | Dihedral group | 73 | 2+ | D73 | 146,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C147 | Cyclic group | 147 | 1 | C147 | 147,2 |
C49:C3 | The semidirect product of C49 and C3 acting faithfully | 49 | 3 | C49:C3 | 147,1 |
C7xC21 | Abelian group of type [7,21] | 147 | C7xC21 | 147,6 | |
C7xC7:C3 | Direct product of C7 and C7:C3 | 21 | 3 | C7xC7:C3 | 147,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C148 | Cyclic group | 148 | 1 | C148 | 148,2 |
D74 | Dihedral group; = C2xD37 | 74 | 2+ | D74 | 148,4 |
Dic37 | Dicyclic group; = C37:2C4 | 148 | 2- | Dic37 | 148,1 |
C37:C4 | The semidirect product of C37 and C4 acting faithfully | 37 | 4+ | C37:C4 | 148,3 |
C2xC74 | Abelian group of type [2,74] | 148 | C2xC74 | 148,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C149 | Cyclic group | 149 | 1 | C149 | 149,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C150 | Cyclic group | 150 | 1 | C150 | 150,4 |
D75 | Dihedral group | 75 | 2+ | D75 | 150,3 |
C5xC30 | Abelian group of type [5,30] | 150 | C5xC30 | 150,13 | |
D5xC15 | Direct product of C15 and D5 | 30 | 2 | D5xC15 | 150,8 |
C5xD15 | Direct product of C5 and D15 | 30 | 2 | C5xD15 | 150,11 |
S3xC25 | Direct product of C25 and S3 | 75 | 2 | S3xC25 | 150,1 |
C3xD25 | Direct product of C3 and D25 | 75 | 2 | C3xD25 | 150,2 |
S3xC52 | Direct product of C52 and S3 | 75 | S3xC5^2 | 150,10 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C151 | Cyclic group | 151 | 1 | C151 | 151,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C152 | Cyclic group | 152 | 1 | C152 | 152,2 |
D76 | Dihedral group | 76 | 2+ | D76 | 152,5 |
Dic38 | Dicyclic group; = C19:Q8 | 152 | 2- | Dic38 | 152,3 |
C19:C8 | The semidirect product of C19 and C8 acting via C8/C4=C2 | 152 | 2 | C19:C8 | 152,1 |
C2xC76 | Abelian group of type [2,76] | 152 | C2xC76 | 152,8 | |
C4xD19 | Direct product of C4 and D19 | 76 | 2 | C4xD19 | 152,4 |
D4xC19 | Direct product of C19 and D4 | 76 | 2 | D4xC19 | 152,9 |
Q8xC19 | Direct product of C19 and Q8 | 152 | 2 | Q8xC19 | 152,10 |
C2xDic19 | Direct product of C2 and Dic19 | 152 | C2xDic19 | 152,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C153 | Cyclic group | 153 | 1 | C153 | 153,1 |
C3xC51 | Abelian group of type [3,51] | 153 | C3xC51 | 153,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C154 | Cyclic group | 154 | 1 | C154 | 154,4 |
D77 | Dihedral group | 77 | 2+ | D77 | 154,3 |
C11xD7 | Direct product of C11 and D7 | 77 | 2 | C11xD7 | 154,1 |
C7xD11 | Direct product of C7 and D11 | 77 | 2 | C7xD11 | 154,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C155 | Cyclic group | 155 | 1 | C155 | 155,2 |
C31:C5 | The semidirect product of C31 and C5 acting faithfully | 31 | 5 | C31:C5 | 155,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C156 | Cyclic group | 156 | 1 | C156 | 156,6 |
D78 | Dihedral group; = C2xD39 | 78 | 2+ | D78 | 156,17 |
F13 | Frobenius group; = C13:C12 = AGL1(F13) = Aut(D13) = Hol(C13) | 13 | 12+ | F13 | 156,7 |
Dic39 | Dicyclic group; = C39:3C4 | 156 | 2- | Dic39 | 156,5 |
C39:C4 | 1st semidirect product of C39 and C4 acting faithfully | 39 | 4 | C39:C4 | 156,10 |
C26.C6 | The non-split extension by C26 of C6 acting faithfully | 52 | 6- | C26.C6 | 156,1 |
C2xC78 | Abelian group of type [2,78] | 156 | C2xC78 | 156,18 | |
S3xC26 | Direct product of C26 and S3 | 78 | 2 | S3xC26 | 156,16 |
C6xD13 | Direct product of C6 and D13 | 78 | 2 | C6xD13 | 156,15 |
Dic3xC13 | Direct product of C13 and Dic3 | 156 | 2 | Dic3xC13 | 156,3 |
C3xDic13 | Direct product of C3 and Dic13 | 156 | 2 | C3xDic13 | 156,4 |
C2xC13:C6 | Direct product of C2 and C13:C6 | 26 | 6+ | C2xC13:C6 | 156,8 |
C3xC13:C4 | Direct product of C3 and C13:C4 | 39 | 4 | C3xC13:C4 | 156,9 |
C4xC13:C3 | Direct product of C4 and C13:C3 | 52 | 3 | C4xC13:C3 | 156,2 |
C22xC13:C3 | Direct product of C22 and C13:C3 | 52 | C2^2xC13:C3 | 156,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C157 | Cyclic group | 157 | 1 | C157 | 157,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C158 | Cyclic group | 158 | 1 | C158 | 158,2 |
D79 | Dihedral group | 79 | 2+ | D79 | 158,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C159 | Cyclic group | 159 | 1 | C159 | 159,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C161 | Cyclic group | 161 | 1 | C161 | 161,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C162 | Cyclic group | 162 | 1 | C162 | 162,2 |
D81 | Dihedral group | 81 | 2+ | D81 | 162,1 |
C9:C18 | The semidirect product of C9 and C18 acting via C18/C3=C6 | 18 | 6 | C9:C18 | 162,6 |
C27:C6 | The semidirect product of C27 and C6 acting faithfully | 27 | 6+ | C27:C6 | 162,9 |
C9xC18 | Abelian group of type [9,18] | 162 | C9xC18 | 162,23 | |
C3xC54 | Abelian group of type [3,54] | 162 | C3xC54 | 162,26 | |
C9xD9 | Direct product of C9 and D9 | 18 | 2 | C9xD9 | 162,3 |
S3xC27 | Direct product of C27 and S3 | 54 | 2 | S3xC27 | 162,8 |
C3xD27 | Direct product of C3 and D27 | 54 | 2 | C3xD27 | 162,7 |
C2xC27:C3 | Direct product of C2 and C27:C3 | 54 | 3 | C2xC27:C3 | 162,27 |
C2xC9:C9 | Direct product of C2 and C9:C9 | 162 | C2xC9:C9 | 162,25 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C163 | Cyclic group | 163 | 1 | C163 | 163,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C164 | Cyclic group | 164 | 1 | C164 | 164,2 |
D82 | Dihedral group; = C2xD41 | 82 | 2+ | D82 | 164,4 |
Dic41 | Dicyclic group; = C41:2C4 | 164 | 2- | Dic41 | 164,1 |
C41:C4 | The semidirect product of C41 and C4 acting faithfully | 41 | 4+ | C41:C4 | 164,3 |
C2xC82 | Abelian group of type [2,82] | 164 | C2xC82 | 164,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C165 | Cyclic group | 165 | 1 | C165 | 165,2 |
C3xC11:C5 | Direct product of C3 and C11:C5 | 33 | 5 | C3xC11:C5 | 165,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C166 | Cyclic group | 166 | 1 | C166 | 166,2 |
D83 | Dihedral group | 83 | 2+ | D83 | 166,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C167 | Cyclic group | 167 | 1 | C167 | 167,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C169 | Cyclic group | 169 | 1 | C169 | 169,1 |
C132 | Elementary abelian group of type [13,13] | 169 | C13^2 | 169,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C170 | Cyclic group | 170 | 1 | C170 | 170,4 |
D85 | Dihedral group | 85 | 2+ | D85 | 170,3 |
D5xC17 | Direct product of C17 and D5 | 85 | 2 | D5xC17 | 170,1 |
C5xD17 | Direct product of C5 and D17 | 85 | 2 | C5xD17 | 170,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C171 | Cyclic group | 171 | 1 | C171 | 171,2 |
C19:C9 | The semidirect product of C19 and C9 acting faithfully | 19 | 9 | C19:C9 | 171,3 |
C19:2C9 | The semidirect product of C19 and C9 acting via C9/C3=C3 | 171 | 3 | C19:2C9 | 171,1 |
C3xC57 | Abelian group of type [3,57] | 171 | C3xC57 | 171,5 | |
C3xC19:C3 | Direct product of C3 and C19:C3 | 57 | 3 | C3xC19:C3 | 171,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C172 | Cyclic group | 172 | 1 | C172 | 172,2 |
D86 | Dihedral group; = C2xD43 | 86 | 2+ | D86 | 172,3 |
Dic43 | Dicyclic group; = C43:C4 | 172 | 2- | Dic43 | 172,1 |
C2xC86 | Abelian group of type [2,86] | 172 | C2xC86 | 172,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C173 | Cyclic group | 173 | 1 | C173 | 173,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C174 | Cyclic group | 174 | 1 | C174 | 174,4 |
D87 | Dihedral group | 87 | 2+ | D87 | 174,3 |
S3xC29 | Direct product of C29 and S3 | 87 | 2 | S3xC29 | 174,1 |
C3xD29 | Direct product of C3 and D29 | 87 | 2 | C3xD29 | 174,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C175 | Cyclic group | 175 | 1 | C175 | 175,1 |
C5xC35 | Abelian group of type [5,35] | 175 | C5xC35 | 175,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C177 | Cyclic group | 177 | 1 | C177 | 177,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C178 | Cyclic group | 178 | 1 | C178 | 178,2 |
D89 | Dihedral group | 89 | 2+ | D89 | 178,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C179 | Cyclic group | 179 | 1 | C179 | 179,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C181 | Cyclic group | 181 | 1 | C181 | 181,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C182 | Cyclic group | 182 | 1 | C182 | 182,4 |
D91 | Dihedral group | 91 | 2+ | D91 | 182,3 |
C13xD7 | Direct product of C13 and D7 | 91 | 2 | C13xD7 | 182,1 |
C7xD13 | Direct product of C7 and D13 | 91 | 2 | C7xD13 | 182,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C183 | Cyclic group | 183 | 1 | C183 | 183,2 |
C61:C3 | The semidirect product of C61 and C3 acting faithfully | 61 | 3 | C61:C3 | 183,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C184 | Cyclic group | 184 | 1 | C184 | 184,2 |
D92 | Dihedral group | 92 | 2+ | D92 | 184,5 |
Dic46 | Dicyclic group; = C23:Q8 | 184 | 2- | Dic46 | 184,3 |
C23:C8 | The semidirect product of C23 and C8 acting via C8/C4=C2 | 184 | 2 | C23:C8 | 184,1 |
C2xC92 | Abelian group of type [2,92] | 184 | C2xC92 | 184,8 | |
C4xD23 | Direct product of C4 and D23 | 92 | 2 | C4xD23 | 184,4 |
D4xC23 | Direct product of C23 and D4 | 92 | 2 | D4xC23 | 184,9 |
Q8xC23 | Direct product of C23 and Q8 | 184 | 2 | Q8xC23 | 184,10 |
C2xDic23 | Direct product of C2 and Dic23 | 184 | C2xDic23 | 184,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C185 | Cyclic group | 185 | 1 | C185 | 185,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C186 | Cyclic group | 186 | 1 | C186 | 186,6 |
D93 | Dihedral group | 93 | 2+ | D93 | 186,5 |
C31:C6 | The semidirect product of C31 and C6 acting faithfully | 31 | 6+ | C31:C6 | 186,1 |
S3xC31 | Direct product of C31 and S3 | 93 | 2 | S3xC31 | 186,3 |
C3xD31 | Direct product of C3 and D31 | 93 | 2 | C3xD31 | 186,4 |
C2xC31:C3 | Direct product of C2 and C31:C3 | 62 | 3 | C2xC31:C3 | 186,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C187 | Cyclic group | 187 | 1 | C187 | 187,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C188 | Cyclic group | 188 | 1 | C188 | 188,2 |
D94 | Dihedral group; = C2xD47 | 94 | 2+ | D94 | 188,3 |
Dic47 | Dicyclic group; = C47:C4 | 188 | 2- | Dic47 | 188,1 |
C2xC94 | Abelian group of type [2,94] | 188 | C2xC94 | 188,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C189 | Cyclic group | 189 | 1 | C189 | 189,2 |
C63:C3 | 2nd semidirect product of C63 and C3 acting faithfully | 63 | 3 | C63:C3 | 189,4 |
C63:3C3 | 3rd semidirect product of C63 and C3 acting faithfully | 63 | 3 | C63:3C3 | 189,5 |
C7:C27 | The semidirect product of C7 and C27 acting via C27/C9=C3 | 189 | 3 | C7:C27 | 189,1 |
C3xC63 | Abelian group of type [3,63] | 189 | C3xC63 | 189,9 | |
C7x3- 1+2 | Direct product of C7 and 3- 1+2 | 63 | 3 | C7xES-(3,1) | 189,11 |
C9xC7:C3 | Direct product of C9 and C7:C3 | 63 | 3 | C9xC7:C3 | 189,3 |
C3xC7:C9 | Direct product of C3 and C7:C9 | 189 | C3xC7:C9 | 189,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C190 | Cyclic group | 190 | 1 | C190 | 190,4 |
D95 | Dihedral group | 95 | 2+ | D95 | 190,3 |
D5xC19 | Direct product of C19 and D5 | 95 | 2 | D5xC19 | 190,1 |
C5xD19 | Direct product of C5 and D19 | 95 | 2 | C5xD19 | 190,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C191 | Cyclic group | 191 | 1 | C191 | 191,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C193 | Cyclic group | 193 | 1 | C193 | 193,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C194 | Cyclic group | 194 | 1 | C194 | 194,2 |
D97 | Dihedral group | 97 | 2+ | D97 | 194,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C195 | Cyclic group | 195 | 1 | C195 | 195,2 |
C5xC13:C3 | Direct product of C5 and C13:C3 | 65 | 3 | C5xC13:C3 | 195,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C196 | Cyclic group | 196 | 1 | C196 | 196,2 |
D98 | Dihedral group; = C2xD49 | 98 | 2+ | D98 | 196,3 |
Dic49 | Dicyclic group; = C49:C4 | 196 | 2- | Dic49 | 196,1 |
C142 | Abelian group of type [14,14] | 196 | C14^2 | 196,12 | |
C2xC98 | Abelian group of type [2,98] | 196 | C2xC98 | 196,4 | |
C7xC28 | Abelian group of type [7,28] | 196 | C7xC28 | 196,7 | |
D7xC14 | Direct product of C14 and D7 | 28 | 2 | D7xC14 | 196,10 |
C7xDic7 | Direct product of C7 and Dic7 | 28 | 2 | C7xDic7 | 196,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C197 | Cyclic group | 197 | 1 | C197 | 197,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C198 | Cyclic group | 198 | 1 | C198 | 198,4 |
D99 | Dihedral group | 99 | 2+ | D99 | 198,3 |
C3xC66 | Abelian group of type [3,66] | 198 | C3xC66 | 198,10 | |
S3xC33 | Direct product of C33 and S3 | 66 | 2 | S3xC33 | 198,6 |
C3xD33 | Direct product of C3 and D33 | 66 | 2 | C3xD33 | 198,7 |
C11xD9 | Direct product of C11 and D9 | 99 | 2 | C11xD9 | 198,1 |
C9xD11 | Direct product of C9 and D11 | 99 | 2 | C9xD11 | 198,2 |
C32xD11 | Direct product of C32 and D11 | 99 | C3^2xD11 | 198,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C199 | Cyclic group | 199 | 1 | C199 | 199,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C201 | Cyclic group | 201 | 1 | C201 | 201,2 |
C67:C3 | The semidirect product of C67 and C3 acting faithfully | 67 | 3 | C67:C3 | 201,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C202 | Cyclic group | 202 | 1 | C202 | 202,2 |
D101 | Dihedral group | 101 | 2+ | D101 | 202,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C203 | Cyclic group | 203 | 1 | C203 | 203,2 |
C29:C7 | The semidirect product of C29 and C7 acting faithfully | 29 | 7 | C29:C7 | 203,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C204 | Cyclic group | 204 | 1 | C204 | 204,4 |
D102 | Dihedral group; = C2xD51 | 102 | 2+ | D102 | 204,11 |
Dic51 | Dicyclic group; = C51:3C4 | 204 | 2- | Dic51 | 204,3 |
C51:C4 | 1st semidirect product of C51 and C4 acting faithfully | 51 | 4 | C51:C4 | 204,6 |
C2xC102 | Abelian group of type [2,102] | 204 | C2xC102 | 204,12 | |
S3xC34 | Direct product of C34 and S3 | 102 | 2 | S3xC34 | 204,10 |
C6xD17 | Direct product of C6 and D17 | 102 | 2 | C6xD17 | 204,9 |
Dic3xC17 | Direct product of C17 and Dic3 | 204 | 2 | Dic3xC17 | 204,1 |
C3xDic17 | Direct product of C3 and Dic17 | 204 | 2 | C3xDic17 | 204,2 |
C3xC17:C4 | Direct product of C3 and C17:C4 | 51 | 4 | C3xC17:C4 | 204,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C205 | Cyclic group | 205 | 1 | C205 | 205,2 |
C41:C5 | The semidirect product of C41 and C5 acting faithfully | 41 | 5 | C41:C5 | 205,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C206 | Cyclic group | 206 | 1 | C206 | 206,2 |
D103 | Dihedral group | 103 | 2+ | D103 | 206,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C207 | Cyclic group | 207 | 1 | C207 | 207,1 |
C3xC69 | Abelian group of type [3,69] | 207 | C3xC69 | 207,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C209 | Cyclic group | 209 | 1 | C209 | 209,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C210 | Cyclic group | 210 | 1 | C210 | 210,12 |
D105 | Dihedral group | 105 | 2+ | D105 | 210,11 |
C5:F7 | The semidirect product of C5 and F7 acting via F7/C7:C3=C2 | 35 | 6+ | C5:F7 | 210,3 |
C5xF7 | Direct product of C5 and F7 | 35 | 6 | C5xF7 | 210,1 |
S3xC35 | Direct product of C35 and S3 | 105 | 2 | S3xC35 | 210,8 |
D7xC15 | Direct product of C15 and D7 | 105 | 2 | D7xC15 | 210,5 |
D5xC21 | Direct product of C21 and D5 | 105 | 2 | D5xC21 | 210,6 |
C3xD35 | Direct product of C3 and D35 | 105 | 2 | C3xD35 | 210,7 |
C5xD21 | Direct product of C5 and D21 | 105 | 2 | C5xD21 | 210,9 |
C7xD15 | Direct product of C7 and D15 | 105 | 2 | C7xD15 | 210,10 |
D5xC7:C3 | Direct product of D5 and C7:C3 | 35 | 6 | D5xC7:C3 | 210,2 |
C10xC7:C3 | Direct product of C10 and C7:C3 | 70 | 3 | C10xC7:C3 | 210,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C211 | Cyclic group | 211 | 1 | C211 | 211,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C212 | Cyclic group | 212 | 1 | C212 | 212,2 |
D106 | Dihedral group; = C2xD53 | 106 | 2+ | D106 | 212,4 |
Dic53 | Dicyclic group; = C53:2C4 | 212 | 2- | Dic53 | 212,1 |
C53:C4 | The semidirect product of C53 and C4 acting faithfully | 53 | 4+ | C53:C4 | 212,3 |
C2xC106 | Abelian group of type [2,106] | 212 | C2xC106 | 212,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C213 | Cyclic group | 213 | 1 | C213 | 213,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C214 | Cyclic group | 214 | 1 | C214 | 214,2 |
D107 | Dihedral group | 107 | 2+ | D107 | 214,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C215 | Cyclic group | 215 | 1 | C215 | 215,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C217 | Cyclic group | 217 | 1 | C217 | 217,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C218 | Cyclic group | 218 | 1 | C218 | 218,2 |
D109 | Dihedral group | 109 | 2+ | D109 | 218,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C219 | Cyclic group | 219 | 1 | C219 | 219,2 |
C73:C3 | The semidirect product of C73 and C3 acting faithfully | 73 | 3 | C73:C3 | 219,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C220 | Cyclic group | 220 | 1 | C220 | 220,6 |
D110 | Dihedral group; = C2xD55 | 110 | 2+ | D110 | 220,14 |
Dic55 | Dicyclic group; = C55:3C4 | 220 | 2- | Dic55 | 220,5 |
C11:C20 | The semidirect product of C11 and C20 acting via C20/C2=C10 | 44 | 10- | C11:C20 | 220,1 |
C11:F5 | The semidirect product of C11 and F5 acting via F5/D5=C2 | 55 | 4 | C11:F5 | 220,10 |
C2xC110 | Abelian group of type [2,110] | 220 | C2xC110 | 220,15 | |
C2xF11 | Direct product of C2 and F11; = Aut(D22) = Hol(C22) | 22 | 10+ | C2xF11 | 220,7 |
C11xF5 | Direct product of C11 and F5 | 55 | 4 | C11xF5 | 220,9 |
D5xC22 | Direct product of C22 and D5 | 110 | 2 | D5xC22 | 220,13 |
C10xD11 | Direct product of C10 and D11 | 110 | 2 | C10xD11 | 220,12 |
C11xDic5 | Direct product of C11 and Dic5 | 220 | 2 | C11xDic5 | 220,3 |
C5xDic11 | Direct product of C5 and Dic11 | 220 | 2 | C5xDic11 | 220,4 |
C4xC11:C5 | Direct product of C4 and C11:C5 | 44 | 5 | C4xC11:C5 | 220,2 |
C22xC11:C5 | Direct product of C22 and C11:C5 | 44 | C2^2xC11:C5 | 220,8 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C221 | Cyclic group | 221 | 1 | C221 | 221,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C222 | Cyclic group | 222 | 1 | C222 | 222,6 |
D111 | Dihedral group | 111 | 2+ | D111 | 222,5 |
C37:C6 | The semidirect product of C37 and C6 acting faithfully | 37 | 6+ | C37:C6 | 222,1 |
S3xC37 | Direct product of C37 and S3 | 111 | 2 | S3xC37 | 222,3 |
C3xD37 | Direct product of C3 and D37 | 111 | 2 | C3xD37 | 222,4 |
C2xC37:C3 | Direct product of C2 and C37:C3 | 74 | 3 | C2xC37:C3 | 222,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C223 | Cyclic group | 223 | 1 | C223 | 223,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C225 | Cyclic group | 225 | 1 | C225 | 225,1 |
C152 | Abelian group of type [15,15] | 225 | C15^2 | 225,6 | |
C3xC75 | Abelian group of type [3,75] | 225 | C3xC75 | 225,2 | |
C5xC45 | Abelian group of type [5,45] | 225 | C5xC45 | 225,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C226 | Cyclic group | 226 | 1 | C226 | 226,2 |
D113 | Dihedral group | 113 | 2+ | D113 | 226,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C227 | Cyclic group | 227 | 1 | C227 | 227,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C228 | Cyclic group | 228 | 1 | C228 | 228,6 |
D114 | Dihedral group; = C2xD57 | 114 | 2+ | D114 | 228,14 |
Dic57 | Dicyclic group; = C57:1C4 | 228 | 2- | Dic57 | 228,5 |
C19:C12 | The semidirect product of C19 and C12 acting via C12/C2=C6 | 76 | 6- | C19:C12 | 228,1 |
C2xC114 | Abelian group of type [2,114] | 228 | C2xC114 | 228,15 | |
S3xC38 | Direct product of C38 and S3 | 114 | 2 | S3xC38 | 228,13 |
C6xD19 | Direct product of C6 and D19 | 114 | 2 | C6xD19 | 228,12 |
Dic3xC19 | Direct product of C19 and Dic3 | 228 | 2 | Dic3xC19 | 228,3 |
C3xDic19 | Direct product of C3 and Dic19 | 228 | 2 | C3xDic19 | 228,4 |
C2xC19:C6 | Direct product of C2 and C19:C6 | 38 | 6+ | C2xC19:C6 | 228,7 |
C4xC19:C3 | Direct product of C4 and C19:C3 | 76 | 3 | C4xC19:C3 | 228,2 |
C22xC19:C3 | Direct product of C22 and C19:C3 | 76 | C2^2xC19:C3 | 228,9 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C229 | Cyclic group | 229 | 1 | C229 | 229,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C230 | Cyclic group | 230 | 1 | C230 | 230,4 |
D115 | Dihedral group | 115 | 2+ | D115 | 230,3 |
D5xC23 | Direct product of C23 and D5 | 115 | 2 | D5xC23 | 230,1 |
C5xD23 | Direct product of C5 and D23 | 115 | 2 | C5xD23 | 230,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C231 | Cyclic group | 231 | 1 | C231 | 231,2 |
C11xC7:C3 | Direct product of C11 and C7:C3 | 77 | 3 | C11xC7:C3 | 231,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C232 | Cyclic group | 232 | 1 | C232 | 232,2 |
D116 | Dihedral group | 116 | 2+ | D116 | 232,6 |
Dic58 | Dicyclic group; = C29:Q8 | 232 | 2- | Dic58 | 232,4 |
C29:C8 | The semidirect product of C29 and C8 acting via C8/C2=C4 | 232 | 4- | C29:C8 | 232,3 |
C29:2C8 | The semidirect product of C29 and C8 acting via C8/C4=C2 | 232 | 2 | C29:2C8 | 232,1 |
C2xC116 | Abelian group of type [2,116] | 232 | C2xC116 | 232,9 | |
C4xD29 | Direct product of C4 and D29 | 116 | 2 | C4xD29 | 232,5 |
D4xC29 | Direct product of C29 and D4 | 116 | 2 | D4xC29 | 232,10 |
Q8xC29 | Direct product of C29 and Q8 | 232 | 2 | Q8xC29 | 232,11 |
C2xDic29 | Direct product of C2 and Dic29 | 232 | C2xDic29 | 232,7 | |
C2xC29:C4 | Direct product of C2 and C29:C4 | 58 | 4+ | C2xC29:C4 | 232,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C233 | Cyclic group | 233 | 1 | C233 | 233,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C234 | Cyclic group | 234 | 1 | C234 | 234,6 |
D117 | Dihedral group | 117 | 2+ | D117 | 234,5 |
D39:C3 | The semidirect product of D39 and C3 acting faithfully | 39 | 6+ | D39:C3 | 234,9 |
C13:C18 | The semidirect product of C13 and C18 acting via C18/C3=C6 | 117 | 6 | C13:C18 | 234,1 |
C3xC78 | Abelian group of type [3,78] | 234 | C3xC78 | 234,16 | |
S3xC39 | Direct product of C39 and S3 | 78 | 2 | S3xC39 | 234,12 |
C3xD39 | Direct product of C3 and D39 | 78 | 2 | C3xD39 | 234,13 |
C13xD9 | Direct product of C13 and D9 | 117 | 2 | C13xD9 | 234,3 |
C9xD13 | Direct product of C9 and D13 | 117 | 2 | C9xD13 | 234,4 |
C32xD13 | Direct product of C32 and D13 | 117 | C3^2xD13 | 234,11 | |
C3xC13:C6 | Direct product of C3 and C13:C6 | 39 | 6 | C3xC13:C6 | 234,7 |
S3xC13:C3 | Direct product of S3 and C13:C3 | 39 | 6 | S3xC13:C3 | 234,8 |
C6xC13:C3 | Direct product of C6 and C13:C3 | 78 | 3 | C6xC13:C3 | 234,10 |
C2xC13:C9 | Direct product of C2 and C13:C9 | 234 | 3 | C2xC13:C9 | 234,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C235 | Cyclic group | 235 | 1 | C235 | 235,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C236 | Cyclic group | 236 | 1 | C236 | 236,2 |
D118 | Dihedral group; = C2xD59 | 118 | 2+ | D118 | 236,3 |
Dic59 | Dicyclic group; = C59:C4 | 236 | 2- | Dic59 | 236,1 |
C2xC118 | Abelian group of type [2,118] | 236 | C2xC118 | 236,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C237 | Cyclic group | 237 | 1 | C237 | 237,2 |
C79:C3 | The semidirect product of C79 and C3 acting faithfully | 79 | 3 | C79:C3 | 237,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C238 | Cyclic group | 238 | 1 | C238 | 238,4 |
D119 | Dihedral group | 119 | 2+ | D119 | 238,3 |
D7xC17 | Direct product of C17 and D7 | 119 | 2 | D7xC17 | 238,1 |
C7xD17 | Direct product of C7 and D17 | 119 | 2 | C7xD17 | 238,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C239 | Cyclic group | 239 | 1 | C239 | 239,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C241 | Cyclic group | 241 | 1 | C241 | 241,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C242 | Cyclic group | 242 | 1 | C242 | 242,2 |
D121 | Dihedral group | 121 | 2+ | D121 | 242,1 |
C11xC22 | Abelian group of type [11,22] | 242 | C11xC22 | 242,5 | |
C11xD11 | Direct product of C11 and D11; = AΣL1(F121) | 22 | 2 | C11xD11 | 242,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C243 | Cyclic group | 243 | 1 | C243 | 243,1 |
C27:C9 | The semidirect product of C27 and C9 acting faithfully | 27 | 9 | C27:C9 | 243,22 |
C81:C3 | The semidirect product of C81 and C3 acting faithfully | 81 | 3 | C81:C3 | 243,24 |
C9:C27 | The semidirect product of C9 and C27 acting via C27/C9=C3 | 243 | C9:C27 | 243,21 | |
C27:2C9 | The semidirect product of C27 and C9 acting via C9/C3=C3 | 243 | C27:2C9 | 243,11 | |
C9xC27 | Abelian group of type [9,27] | 243 | C9xC27 | 243,10 | |
C3xC81 | Abelian group of type [3,81] | 243 | C3xC81 | 243,23 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C244 | Cyclic group | 244 | 1 | C244 | 244,2 |
D122 | Dihedral group; = C2xD61 | 122 | 2+ | D122 | 244,4 |
Dic61 | Dicyclic group; = C61:2C4 | 244 | 2- | Dic61 | 244,1 |
C61:C4 | The semidirect product of C61 and C4 acting faithfully | 61 | 4+ | C61:C4 | 244,3 |
C2xC122 | Abelian group of type [2,122] | 244 | C2xC122 | 244,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C245 | Cyclic group | 245 | 1 | C245 | 245,1 |
C7xC35 | Abelian group of type [7,35] | 245 | C7xC35 | 245,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C246 | Cyclic group | 246 | 1 | C246 | 246,4 |
D123 | Dihedral group | 123 | 2+ | D123 | 246,3 |
S3xC41 | Direct product of C41 and S3 | 123 | 2 | S3xC41 | 246,1 |
C3xD41 | Direct product of C3 and D41 | 123 | 2 | C3xD41 | 246,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C247 | Cyclic group | 247 | 1 | C247 | 247,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C248 | Cyclic group | 248 | 1 | C248 | 248,2 |
D124 | Dihedral group | 124 | 2+ | D124 | 248,5 |
Dic62 | Dicyclic group; = C31:Q8 | 248 | 2- | Dic62 | 248,3 |
C31:C8 | The semidirect product of C31 and C8 acting via C8/C4=C2 | 248 | 2 | C31:C8 | 248,1 |
C2xC124 | Abelian group of type [2,124] | 248 | C2xC124 | 248,8 | |
C4xD31 | Direct product of C4 and D31 | 124 | 2 | C4xD31 | 248,4 |
D4xC31 | Direct product of C31 and D4 | 124 | 2 | D4xC31 | 248,9 |
Q8xC31 | Direct product of C31 and Q8 | 248 | 2 | Q8xC31 | 248,10 |
C2xDic31 | Direct product of C2 and Dic31 | 248 | C2xDic31 | 248,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C249 | Cyclic group | 249 | 1 | C249 | 249,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C250 | Cyclic group | 250 | 1 | C250 | 250,2 |
D125 | Dihedral group | 125 | 2+ | D125 | 250,1 |
C25:C10 | The semidirect product of C25 and C10 acting faithfully | 25 | 10+ | C25:C10 | 250,6 |
C5xC50 | Abelian group of type [5,50] | 250 | C5xC50 | 250,9 | |
C5xD25 | Direct product of C5 and D25 | 50 | 2 | C5xD25 | 250,3 |
D5xC25 | Direct product of C25 and D5 | 50 | 2 | D5xC25 | 250,4 |
C2x5- 1+2 | Direct product of C2 and 5- 1+2 | 50 | 5 | C2xES-(5,1) | 250,11 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C251 | Cyclic group | 251 | 1 | C251 | 251,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C253 | Cyclic group | 253 | 1 | C253 | 253,2 |
C23:C11 | The semidirect product of C23 and C11 acting faithfully | 23 | 11 | C23:C11 | 253,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C254 | Cyclic group | 254 | 1 | C254 | 254,2 |
D127 | Dihedral group | 127 | 2+ | D127 | 254,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C255 | Cyclic group | 255 | 1 | C255 | 255,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C257 | Cyclic group | 257 | 1 | C257 | 257,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C258 | Cyclic group | 258 | 1 | C258 | 258,6 |
D129 | Dihedral group | 129 | 2+ | D129 | 258,5 |
C43:C6 | The semidirect product of C43 and C6 acting faithfully | 43 | 6+ | C43:C6 | 258,1 |
S3xC43 | Direct product of C43 and S3 | 129 | 2 | S3xC43 | 258,3 |
C3xD43 | Direct product of C3 and D43 | 129 | 2 | C3xD43 | 258,4 |
C2xC43:C3 | Direct product of C2 and C43:C3 | 86 | 3 | C2xC43:C3 | 258,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C259 | Cyclic group | 259 | 1 | C259 | 259,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C260 | Cyclic group | 260 | 1 | C260 | 260,4 |
D130 | Dihedral group; = C2xD65 | 130 | 2+ | D130 | 260,14 |
Dic65 | Dicyclic group; = C65:7C4 | 260 | 2- | Dic65 | 260,3 |
C65:C4 | 3rd semidirect product of C65 and C4 acting faithfully | 65 | 4 | C65:C4 | 260,6 |
C65:2C4 | 2nd semidirect product of C65 and C4 acting faithfully | 65 | 4+ | C65:2C4 | 260,10 |
C13:3F5 | The semidirect product of C13 and F5 acting via F5/D5=C2 | 65 | 4 | C13:3F5 | 260,8 |
C13:F5 | 1st semidirect product of C13 and F5 acting via F5/C5=C4 | 65 | 4+ | C13:F5 | 260,9 |
C2xC130 | Abelian group of type [2,130] | 260 | C2xC130 | 260,15 | |
C13xF5 | Direct product of C13 and F5 | 65 | 4 | C13xF5 | 260,7 |
D5xC26 | Direct product of C26 and D5 | 130 | 2 | D5xC26 | 260,13 |
C10xD13 | Direct product of C10 and D13 | 130 | 2 | C10xD13 | 260,12 |
C13xDic5 | Direct product of C13 and Dic5 | 260 | 2 | C13xDic5 | 260,1 |
C5xDic13 | Direct product of C5 and Dic13 | 260 | 2 | C5xDic13 | 260,2 |
C5xC13:C4 | Direct product of C5 and C13:C4 | 65 | 4 | C5xC13:C4 | 260,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C261 | Cyclic group | 261 | 1 | C261 | 261,1 |
C3xC87 | Abelian group of type [3,87] | 261 | C3xC87 | 261,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C262 | Cyclic group | 262 | 1 | C262 | 262,2 |
D131 | Dihedral group | 131 | 2+ | D131 | 262,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C263 | Cyclic group | 263 | 1 | C263 | 263,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C265 | Cyclic group | 265 | 1 | C265 | 265,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C266 | Cyclic group | 266 | 1 | C266 | 266,4 |
D133 | Dihedral group | 133 | 2+ | D133 | 266,3 |
D7xC19 | Direct product of C19 and D7 | 133 | 2 | D7xC19 | 266,1 |
C7xD19 | Direct product of C7 and D19 | 133 | 2 | C7xD19 | 266,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C267 | Cyclic group | 267 | 1 | C267 | 267,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C268 | Cyclic group | 268 | 1 | C268 | 268,2 |
D134 | Dihedral group; = C2xD67 | 134 | 2+ | D134 | 268,3 |
Dic67 | Dicyclic group; = C67:C4 | 268 | 2- | Dic67 | 268,1 |
C2xC134 | Abelian group of type [2,134] | 268 | C2xC134 | 268,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C269 | Cyclic group | 269 | 1 | C269 | 269,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C270 | Cyclic group | 270 | 1 | C270 | 270,4 |
D135 | Dihedral group | 135 | 2+ | D135 | 270,3 |
D45:C3 | The semidirect product of D45 and C3 acting faithfully | 45 | 6+ | D45:C3 | 270,15 |
C3xC90 | Abelian group of type [3,90] | 270 | C3xC90 | 270,20 | |
D5x3- 1+2 | Direct product of D5 and 3- 1+2 | 45 | 6 | D5xES-(3,1) | 270,7 |
S3xC45 | Direct product of C45 and S3 | 90 | 2 | S3xC45 | 270,9 |
C15xD9 | Direct product of C15 and D9 | 90 | 2 | C15xD9 | 270,8 |
C3xD45 | Direct product of C3 and D45 | 90 | 2 | C3xD45 | 270,12 |
C9xD15 | Direct product of C9 and D15 | 90 | 2 | C9xD15 | 270,13 |
C10x3- 1+2 | Direct product of C10 and 3- 1+2 | 90 | 3 | C10xES-(3,1) | 270,22 |
C5xD27 | Direct product of C5 and D27 | 135 | 2 | C5xD27 | 270,1 |
D5xC27 | Direct product of C27 and D5 | 135 | 2 | D5xC27 | 270,2 |
C5xC9:C6 | Direct product of C5 and C9:C6 | 45 | 6 | C5xC9:C6 | 270,11 |
D5xC3xC9 | Direct product of C3xC9 and D5 | 135 | D5xC3xC9 | 270,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C271 | Cyclic group | 271 | 1 | C271 | 271,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C273 | Cyclic group | 273 | 1 | C273 | 273,5 |
C91:C3 | 3rd semidirect product of C91 and C3 acting faithfully | 91 | 3 | C91:C3 | 273,3 |
C91:4C3 | 4th semidirect product of C91 and C3 acting faithfully | 91 | 3 | C91:4C3 | 273,4 |
C13xC7:C3 | Direct product of C13 and C7:C3 | 91 | 3 | C13xC7:C3 | 273,1 |
C7xC13:C3 | Direct product of C7 and C13:C3 | 91 | 3 | C7xC13:C3 | 273,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C274 | Cyclic group | 274 | 1 | C274 | 274,2 |
D137 | Dihedral group | 137 | 2+ | D137 | 274,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C275 | Cyclic group | 275 | 1 | C275 | 275,2 |
C11:C25 | The semidirect product of C11 and C25 acting via C25/C5=C5 | 275 | 5 | C11:C25 | 275,1 |
C5xC55 | Abelian group of type [5,55] | 275 | C5xC55 | 275,4 | |
C5xC11:C5 | Direct product of C5 and C11:C5 | 55 | 5 | C5xC11:C5 | 275,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C276 | Cyclic group | 276 | 1 | C276 | 276,4 |
D138 | Dihedral group; = C2xD69 | 138 | 2+ | D138 | 276,9 |
Dic69 | Dicyclic group; = C69:1C4 | 276 | 2- | Dic69 | 276,3 |
C2xC138 | Abelian group of type [2,138] | 276 | C2xC138 | 276,10 | |
S3xC46 | Direct product of C46 and S3 | 138 | 2 | S3xC46 | 276,8 |
C6xD23 | Direct product of C6 and D23 | 138 | 2 | C6xD23 | 276,7 |
Dic3xC23 | Direct product of C23 and Dic3 | 276 | 2 | Dic3xC23 | 276,1 |
C3xDic23 | Direct product of C3 and Dic23 | 276 | 2 | C3xDic23 | 276,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C277 | Cyclic group | 277 | 1 | C277 | 277,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C278 | Cyclic group | 278 | 1 | C278 | 278,2 |
D139 | Dihedral group | 139 | 2+ | D139 | 278,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C279 | Cyclic group | 279 | 1 | C279 | 279,2 |
C31:C9 | The semidirect product of C31 and C9 acting via C9/C3=C3 | 279 | 3 | C31:C9 | 279,1 |
C3xC93 | Abelian group of type [3,93] | 279 | C3xC93 | 279,4 | |
C3xC31:C3 | Direct product of C3 and C31:C3 | 93 | 3 | C3xC31:C3 | 279,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C281 | Cyclic group | 281 | 1 | C281 | 281,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C282 | Cyclic group | 282 | 1 | C282 | 282,4 |
D141 | Dihedral group | 141 | 2+ | D141 | 282,3 |
S3xC47 | Direct product of C47 and S3 | 141 | 2 | S3xC47 | 282,1 |
C3xD47 | Direct product of C3 and D47 | 141 | 2 | C3xD47 | 282,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C283 | Cyclic group | 283 | 1 | C283 | 283,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C284 | Cyclic group | 284 | 1 | C284 | 284,2 |
D142 | Dihedral group; = C2xD71 | 142 | 2+ | D142 | 284,3 |
Dic71 | Dicyclic group; = C71:C4 | 284 | 2- | Dic71 | 284,1 |
C2xC142 | Abelian group of type [2,142] | 284 | C2xC142 | 284,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C285 | Cyclic group | 285 | 1 | C285 | 285,2 |
C5xC19:C3 | Direct product of C5 and C19:C3 | 95 | 3 | C5xC19:C3 | 285,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C286 | Cyclic group | 286 | 1 | C286 | 286,4 |
D143 | Dihedral group | 143 | 2+ | D143 | 286,3 |
C13xD11 | Direct product of C13 and D11 | 143 | 2 | C13xD11 | 286,1 |
C11xD13 | Direct product of C11 and D13 | 143 | 2 | C11xD13 | 286,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C287 | Cyclic group | 287 | 1 | C287 | 287,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C289 | Cyclic group | 289 | 1 | C289 | 289,1 |
C172 | Elementary abelian group of type [17,17] | 289 | C17^2 | 289,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C290 | Cyclic group | 290 | 1 | C290 | 290,4 |
D145 | Dihedral group | 145 | 2+ | D145 | 290,3 |
D5xC29 | Direct product of C29 and D5 | 145 | 2 | D5xC29 | 290,1 |
C5xD29 | Direct product of C5 and D29 | 145 | 2 | C5xD29 | 290,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C291 | Cyclic group | 291 | 1 | C291 | 291,2 |
C97:C3 | The semidirect product of C97 and C3 acting faithfully | 97 | 3 | C97:C3 | 291,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C292 | Cyclic group | 292 | 1 | C292 | 292,2 |
D146 | Dihedral group; = C2xD73 | 146 | 2+ | D146 | 292,4 |
Dic73 | Dicyclic group; = C73:2C4 | 292 | 2- | Dic73 | 292,1 |
C73:C4 | The semidirect product of C73 and C4 acting faithfully | 73 | 4+ | C73:C4 | 292,3 |
C2xC146 | Abelian group of type [2,146] | 292 | C2xC146 | 292,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C293 | Cyclic group | 293 | 1 | C293 | 293,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C294 | Cyclic group | 294 | 1 | C294 | 294,6 |
D147 | Dihedral group | 147 | 2+ | D147 | 294,5 |
C49:C6 | The semidirect product of C49 and C6 acting faithfully | 49 | 6+ | C49:C6 | 294,1 |
C7xC42 | Abelian group of type [7,42] | 294 | C7xC42 | 294,23 | |
C7xF7 | Direct product of C7 and F7 | 42 | 6 | C7xF7 | 294,8 |
D7xC21 | Direct product of C21 and D7 | 42 | 2 | D7xC21 | 294,18 |
C7xD21 | Direct product of C7 and D21 | 42 | 2 | C7xD21 | 294,21 |
S3xC49 | Direct product of C49 and S3 | 147 | 2 | S3xC49 | 294,3 |
C3xD49 | Direct product of C3 and D49 | 147 | 2 | C3xD49 | 294,4 |
S3xC72 | Direct product of C72 and S3 | 147 | S3xC7^2 | 294,20 | |
C14xC7:C3 | Direct product of C14 and C7:C3 | 42 | 3 | C14xC7:C3 | 294,15 |
C2xC49:C3 | Direct product of C2 and C49:C3 | 98 | 3 | C2xC49:C3 | 294,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C295 | Cyclic group | 295 | 1 | C295 | 295,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C296 | Cyclic group | 296 | 1 | C296 | 296,2 |
D148 | Dihedral group | 148 | 2+ | D148 | 296,6 |
Dic74 | Dicyclic group; = C37:Q8 | 296 | 2- | Dic74 | 296,4 |
C37:C8 | The semidirect product of C37 and C8 acting via C8/C2=C4 | 296 | 4- | C37:C8 | 296,3 |
C37:2C8 | The semidirect product of C37 and C8 acting via C8/C4=C2 | 296 | 2 | C37:2C8 | 296,1 |
C2xC148 | Abelian group of type [2,148] | 296 | C2xC148 | 296,9 | |
C4xD37 | Direct product of C4 and D37 | 148 | 2 | C4xD37 | 296,5 |
D4xC37 | Direct product of C37 and D4 | 148 | 2 | D4xC37 | 296,10 |
Q8xC37 | Direct product of C37 and Q8 | 296 | 2 | Q8xC37 | 296,11 |
C2xDic37 | Direct product of C2 and Dic37 | 296 | C2xDic37 | 296,7 | |
C2xC37:C4 | Direct product of C2 and C37:C4 | 74 | 4+ | C2xC37:C4 | 296,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C297 | Cyclic group | 297 | 1 | C297 | 297,1 |
C3xC99 | Abelian group of type [3,99] | 297 | C3xC99 | 297,2 | |
C11x3- 1+2 | Direct product of C11 and 3- 1+2 | 99 | 3 | C11xES-(3,1) | 297,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C298 | Cyclic group | 298 | 1 | C298 | 298,2 |
D149 | Dihedral group | 149 | 2+ | D149 | 298,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C299 | Cyclic group | 299 | 1 | C299 | 299,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C301 | Cyclic group | 301 | 1 | C301 | 301,2 |
C43:C7 | The semidirect product of C43 and C7 acting faithfully | 43 | 7 | C43:C7 | 301,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C302 | Cyclic group | 302 | 1 | C302 | 302,2 |
D151 | Dihedral group | 151 | 2+ | D151 | 302,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C303 | Cyclic group | 303 | 1 | C303 | 303,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C305 | Cyclic group | 305 | 1 | C305 | 305,2 |
C61:C5 | The semidirect product of C61 and C5 acting faithfully | 61 | 5 | C61:C5 | 305,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C306 | Cyclic group | 306 | 1 | C306 | 306,4 |
D153 | Dihedral group | 153 | 2+ | D153 | 306,3 |
C3xC102 | Abelian group of type [3,102] | 306 | C3xC102 | 306,10 | |
S3xC51 | Direct product of C51 and S3 | 102 | 2 | S3xC51 | 306,6 |
C3xD51 | Direct product of C3 and D51 | 102 | 2 | C3xD51 | 306,7 |
C17xD9 | Direct product of C17 and D9 | 153 | 2 | C17xD9 | 306,1 |
C9xD17 | Direct product of C9 and D17 | 153 | 2 | C9xD17 | 306,2 |
C32xD17 | Direct product of C32 and D17 | 153 | C3^2xD17 | 306,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C307 | Cyclic group | 307 | 1 | C307 | 307,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C308 | Cyclic group | 308 | 1 | C308 | 308,4 |
D154 | Dihedral group; = C2xD77 | 154 | 2+ | D154 | 308,8 |
Dic77 | Dicyclic group; = C77:1C4 | 308 | 2- | Dic77 | 308,3 |
C2xC154 | Abelian group of type [2,154] | 308 | C2xC154 | 308,9 | |
D7xC22 | Direct product of C22 and D7 | 154 | 2 | D7xC22 | 308,7 |
C14xD11 | Direct product of C14 and D11 | 154 | 2 | C14xD11 | 308,6 |
C11xDic7 | Direct product of C11 and Dic7 | 308 | 2 | C11xDic7 | 308,1 |
C7xDic11 | Direct product of C7 and Dic11 | 308 | 2 | C7xDic11 | 308,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C309 | Cyclic group | 309 | 1 | C309 | 309,2 |
C103:C3 | The semidirect product of C103 and C3 acting faithfully | 103 | 3 | C103:C3 | 309,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C310 | Cyclic group | 310 | 1 | C310 | 310,6 |
D155 | Dihedral group | 155 | 2+ | D155 | 310,5 |
C31:C10 | The semidirect product of C31 and C10 acting faithfully | 31 | 10+ | C31:C10 | 310,1 |
D5xC31 | Direct product of C31 and D5 | 155 | 2 | D5xC31 | 310,3 |
C5xD31 | Direct product of C5 and D31 | 155 | 2 | C5xD31 | 310,4 |
C2xC31:C5 | Direct product of C2 and C31:C5 | 62 | 5 | C2xC31:C5 | 310,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C311 | Cyclic group | 311 | 1 | C311 | 311,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C313 | Cyclic group | 313 | 1 | C313 | 313,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C314 | Cyclic group | 314 | 1 | C314 | 314,2 |
D157 | Dihedral group | 157 | 2+ | D157 | 314,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C315 | Cyclic group | 315 | 1 | C315 | 315,2 |
C3xC105 | Abelian group of type [3,105] | 315 | C3xC105 | 315,4 | |
C15xC7:C3 | Direct product of C15 and C7:C3 | 105 | 3 | C15xC7:C3 | 315,3 |
C5xC7:C9 | Direct product of C5 and C7:C9 | 315 | 3 | C5xC7:C9 | 315,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C316 | Cyclic group | 316 | 1 | C316 | 316,2 |
D158 | Dihedral group; = C2xD79 | 158 | 2+ | D158 | 316,3 |
Dic79 | Dicyclic group; = C79:C4 | 316 | 2- | Dic79 | 316,1 |
C2xC158 | Abelian group of type [2,158] | 316 | C2xC158 | 316,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C317 | Cyclic group | 317 | 1 | C317 | 317,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C318 | Cyclic group | 318 | 1 | C318 | 318,4 |
D159 | Dihedral group | 159 | 2+ | D159 | 318,3 |
S3xC53 | Direct product of C53 and S3 | 159 | 2 | S3xC53 | 318,1 |
C3xD53 | Direct product of C3 and D53 | 159 | 2 | C3xD53 | 318,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C319 | Cyclic group | 319 | 1 | C319 | 319,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C321 | Cyclic group | 321 | 1 | C321 | 321,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C322 | Cyclic group | 322 | 1 | C322 | 322,4 |
D161 | Dihedral group | 161 | 2+ | D161 | 322,3 |
D7xC23 | Direct product of C23 and D7 | 161 | 2 | D7xC23 | 322,1 |
C7xD23 | Direct product of C7 and D23 | 161 | 2 | C7xD23 | 322,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C323 | Cyclic group | 323 | 1 | C323 | 323,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C325 | Cyclic group | 325 | 1 | C325 | 325,1 |
C5xC65 | Abelian group of type [5,65] | 325 | C5xC65 | 325,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C326 | Cyclic group | 326 | 1 | C326 | 326,2 |
D163 | Dihedral group | 163 | 2+ | D163 | 326,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C327 | Cyclic group | 327 | 1 | C327 | 327,2 |
C109:C3 | The semidirect product of C109 and C3 acting faithfully | 109 | 3 | C109:C3 | 327,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C328 | Cyclic group | 328 | 1 | C328 | 328,2 |
D164 | Dihedral group | 164 | 2+ | D164 | 328,6 |
Dic82 | Dicyclic group; = C41:Q8 | 328 | 2- | Dic82 | 328,4 |
C41:C8 | The semidirect product of C41 and C8 acting faithfully | 41 | 8+ | C41:C8 | 328,12 |
C41:3C8 | The semidirect product of C41 and C8 acting via C8/C4=C2 | 328 | 2 | C41:3C8 | 328,1 |
C41:2C8 | The semidirect product of C41 and C8 acting via C8/C2=C4 | 328 | 4- | C41:2C8 | 328,3 |
C2xC164 | Abelian group of type [2,164] | 328 | C2xC164 | 328,9 | |
C4xD41 | Direct product of C4 and D41 | 164 | 2 | C4xD41 | 328,5 |
D4xC41 | Direct product of C41 and D4 | 164 | 2 | D4xC41 | 328,10 |
Q8xC41 | Direct product of C41 and Q8 | 328 | 2 | Q8xC41 | 328,11 |
C2xDic41 | Direct product of C2 and Dic41 | 328 | C2xDic41 | 328,7 | |
C2xC41:C4 | Direct product of C2 and C41:C4 | 82 | 4+ | C2xC41:C4 | 328,13 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C329 | Cyclic group | 329 | 1 | C329 | 329,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C330 | Cyclic group | 330 | 1 | C330 | 330,12 |
D165 | Dihedral group | 165 | 2+ | D165 | 330,11 |
C3:F11 | The semidirect product of C3 and F11 acting via F11/C11:C5=C2 | 33 | 10+ | C3:F11 | 330,3 |
C3xF11 | Direct product of C3 and F11 | 33 | 10 | C3xF11 | 330,1 |
S3xC55 | Direct product of C55 and S3 | 165 | 2 | S3xC55 | 330,8 |
D5xC33 | Direct product of C33 and D5 | 165 | 2 | D5xC33 | 330,6 |
C3xD55 | Direct product of C3 and D55 | 165 | 2 | C3xD55 | 330,7 |
C5xD33 | Direct product of C5 and D33 | 165 | 2 | C5xD33 | 330,9 |
C15xD11 | Direct product of C15 and D11 | 165 | 2 | C15xD11 | 330,5 |
C11xD15 | Direct product of C11 and D15 | 165 | 2 | C11xD15 | 330,10 |
S3xC11:C5 | Direct product of S3 and C11:C5 | 33 | 10 | S3xC11:C5 | 330,2 |
C6xC11:C5 | Direct product of C6 and C11:C5 | 66 | 5 | C6xC11:C5 | 330,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C331 | Cyclic group | 331 | 1 | C331 | 331,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C332 | Cyclic group | 332 | 1 | C332 | 332,2 |
D166 | Dihedral group; = C2xD83 | 166 | 2+ | D166 | 332,3 |
Dic83 | Dicyclic group; = C83:C4 | 332 | 2- | Dic83 | 332,1 |
C2xC166 | Abelian group of type [2,166] | 332 | C2xC166 | 332,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C333 | Cyclic group | 333 | 1 | C333 | 333,2 |
C37:C9 | The semidirect product of C37 and C9 acting faithfully | 37 | 9 | C37:C9 | 333,3 |
C37:2C9 | The semidirect product of C37 and C9 acting via C9/C3=C3 | 333 | 3 | C37:2C9 | 333,1 |
C3xC111 | Abelian group of type [3,111] | 333 | C3xC111 | 333,5 | |
C3xC37:C3 | Direct product of C3 and C37:C3 | 111 | 3 | C3xC37:C3 | 333,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C334 | Cyclic group | 334 | 1 | C334 | 334,2 |
D167 | Dihedral group | 167 | 2+ | D167 | 334,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C335 | Cyclic group | 335 | 1 | C335 | 335,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C337 | Cyclic group | 337 | 1 | C337 | 337,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C338 | Cyclic group | 338 | 1 | C338 | 338,2 |
D169 | Dihedral group | 169 | 2+ | D169 | 338,1 |
C13xC26 | Abelian group of type [13,26] | 338 | C13xC26 | 338,5 | |
C13xD13 | Direct product of C13 and D13; = AΣL1(F169) | 26 | 2 | C13xD13 | 338,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C339 | Cyclic group | 339 | 1 | C339 | 339,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C340 | Cyclic group | 340 | 1 | C340 | 340,4 |
D170 | Dihedral group; = C2xD85 | 170 | 2+ | D170 | 340,14 |
Dic85 | Dicyclic group; = C85:7C4 | 340 | 2- | Dic85 | 340,3 |
C85:C4 | 3rd semidirect product of C85 and C4 acting faithfully | 85 | 4 | C85:C4 | 340,6 |
C85:2C4 | 2nd semidirect product of C85 and C4 acting faithfully | 85 | 4+ | C85:2C4 | 340,10 |
C17:3F5 | The semidirect product of C17 and F5 acting via F5/D5=C2 | 85 | 4 | C17:3F5 | 340,8 |
C17:F5 | 1st semidirect product of C17 and F5 acting via F5/C5=C4 | 85 | 4+ | C17:F5 | 340,9 |
C2xC170 | Abelian group of type [2,170] | 340 | C2xC170 | 340,15 | |
C17xF5 | Direct product of C17 and F5 | 85 | 4 | C17xF5 | 340,7 |
D5xC34 | Direct product of C34 and D5 | 170 | 2 | D5xC34 | 340,13 |
C10xD17 | Direct product of C10 and D17 | 170 | 2 | C10xD17 | 340,12 |
C17xDic5 | Direct product of C17 and Dic5 | 340 | 2 | C17xDic5 | 340,1 |
C5xDic17 | Direct product of C5 and Dic17 | 340 | 2 | C5xDic17 | 340,2 |
C5xC17:C4 | Direct product of C5 and C17:C4 | 85 | 4 | C5xC17:C4 | 340,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C341 | Cyclic group | 341 | 1 | C341 | 341,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C342 | Cyclic group | 342 | 1 | C342 | 342,6 |
D171 | Dihedral group | 171 | 2+ | D171 | 342,5 |
F19 | Frobenius group; = C19:C18 = AGL1(F19) = Aut(D19) = Hol(C19) | 19 | 18+ | F19 | 342,7 |
D57:C3 | The semidirect product of D57 and C3 acting faithfully | 57 | 6+ | D57:C3 | 342,11 |
C57.C6 | The non-split extension by C57 of C6 acting faithfully | 171 | 6 | C57.C6 | 342,1 |
C3xC114 | Abelian group of type [3,114] | 342 | C3xC114 | 342,18 | |
S3xC57 | Direct product of C57 and S3 | 114 | 2 | S3xC57 | 342,14 |
C3xD57 | Direct product of C3 and D57 | 114 | 2 | C3xD57 | 342,15 |
D9xC19 | Direct product of C19 and D9 | 171 | 2 | D9xC19 | 342,3 |
C9xD19 | Direct product of C9 and D19 | 171 | 2 | C9xD19 | 342,4 |
C32xD19 | Direct product of C32 and D19 | 171 | C3^2xD19 | 342,13 | |
C2xC19:C9 | Direct product of C2 and C19:C9 | 38 | 9 | C2xC19:C9 | 342,8 |
C3xC19:C6 | Direct product of C3 and C19:C6 | 57 | 6 | C3xC19:C6 | 342,9 |
S3xC19:C3 | Direct product of S3 and C19:C3 | 57 | 6 | S3xC19:C3 | 342,10 |
C6xC19:C3 | Direct product of C6 and C19:C3 | 114 | 3 | C6xC19:C3 | 342,12 |
C2xC19:2C9 | Direct product of C2 and C19:2C9 | 342 | 3 | C2xC19:2C9 | 342,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C343 | Cyclic group | 343 | 1 | C343 | 343,1 |
7- 1+2 | Extraspecial group | 49 | 7 | ES-(7,1) | 343,4 |
C7xC49 | Abelian group of type [7,49] | 343 | C7xC49 | 343,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C344 | Cyclic group | 344 | 1 | C344 | 344,2 |
D172 | Dihedral group | 172 | 2+ | D172 | 344,5 |
Dic86 | Dicyclic group; = C43:Q8 | 344 | 2- | Dic86 | 344,3 |
C43:C8 | The semidirect product of C43 and C8 acting via C8/C4=C2 | 344 | 2 | C43:C8 | 344,1 |
C2xC172 | Abelian group of type [2,172] | 344 | C2xC172 | 344,8 | |
C4xD43 | Direct product of C4 and D43 | 172 | 2 | C4xD43 | 344,4 |
D4xC43 | Direct product of C43 and D4 | 172 | 2 | D4xC43 | 344,9 |
Q8xC43 | Direct product of C43 and Q8 | 344 | 2 | Q8xC43 | 344,10 |
C2xDic43 | Direct product of C2 and Dic43 | 344 | C2xDic43 | 344,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C345 | Cyclic group | 345 | 1 | C345 | 345,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C346 | Cyclic group | 346 | 1 | C346 | 346,2 |
D173 | Dihedral group | 173 | 2+ | D173 | 346,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C347 | Cyclic group | 347 | 1 | C347 | 347,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C348 | Cyclic group | 348 | 1 | C348 | 348,4 |
D174 | Dihedral group; = C2xD87 | 174 | 2+ | D174 | 348,11 |
Dic87 | Dicyclic group; = C87:3C4 | 348 | 2- | Dic87 | 348,3 |
C87:C4 | 1st semidirect product of C87 and C4 acting faithfully | 87 | 4 | C87:C4 | 348,6 |
C2xC174 | Abelian group of type [2,174] | 348 | C2xC174 | 348,12 | |
S3xC58 | Direct product of C58 and S3 | 174 | 2 | S3xC58 | 348,10 |
C6xD29 | Direct product of C6 and D29 | 174 | 2 | C6xD29 | 348,9 |
Dic3xC29 | Direct product of C29 and Dic3 | 348 | 2 | Dic3xC29 | 348,1 |
C3xDic29 | Direct product of C3 and Dic29 | 348 | 2 | C3xDic29 | 348,2 |
C3xC29:C4 | Direct product of C3 and C29:C4 | 87 | 4 | C3xC29:C4 | 348,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C349 | Cyclic group | 349 | 1 | C349 | 349,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C350 | Cyclic group | 350 | 1 | C350 | 350,4 |
D175 | Dihedral group | 175 | 2+ | D175 | 350,3 |
C5xC70 | Abelian group of type [5,70] | 350 | C5xC70 | 350,10 | |
D5xC35 | Direct product of C35 and D5 | 70 | 2 | D5xC35 | 350,6 |
C5xD35 | Direct product of C5 and D35 | 70 | 2 | C5xD35 | 350,7 |
C7xD25 | Direct product of C7 and D25 | 175 | 2 | C7xD25 | 350,1 |
D7xC25 | Direct product of C25 and D7 | 175 | 2 | D7xC25 | 350,2 |
D7xC52 | Direct product of C52 and D7 | 175 | D7xC5^2 | 350,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C351 | Cyclic group | 351 | 1 | C351 | 351,2 |
C117:C3 | 2nd semidirect product of C117 and C3 acting faithfully | 117 | 3 | C117:C3 | 351,4 |
C117:3C3 | 3rd semidirect product of C117 and C3 acting faithfully | 117 | 3 | C117:3C3 | 351,5 |
C13:C27 | The semidirect product of C13 and C27 acting via C27/C9=C3 | 351 | 3 | C13:C27 | 351,1 |
C3xC117 | Abelian group of type [3,117] | 351 | C3xC117 | 351,9 | |
C13x3- 1+2 | Direct product of C13 and 3- 1+2 | 117 | 3 | C13xES-(3,1) | 351,11 |
C9xC13:C3 | Direct product of C9 and C13:C3 | 117 | 3 | C9xC13:C3 | 351,3 |
C3xC13:C9 | Direct product of C3 and C13:C9 | 351 | C3xC13:C9 | 351,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C353 | Cyclic group | 353 | 1 | C353 | 353,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C354 | Cyclic group | 354 | 1 | C354 | 354,4 |
D177 | Dihedral group | 177 | 2+ | D177 | 354,3 |
S3xC59 | Direct product of C59 and S3 | 177 | 2 | S3xC59 | 354,1 |
C3xD59 | Direct product of C3 and D59 | 177 | 2 | C3xD59 | 354,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C355 | Cyclic group | 355 | 1 | C355 | 355,2 |
C71:C5 | The semidirect product of C71 and C5 acting faithfully | 71 | 5 | C71:C5 | 355,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C356 | Cyclic group | 356 | 1 | C356 | 356,2 |
D178 | Dihedral group; = C2xD89 | 178 | 2+ | D178 | 356,4 |
Dic89 | Dicyclic group; = C89:2C4 | 356 | 2- | Dic89 | 356,1 |
C89:C4 | The semidirect product of C89 and C4 acting faithfully | 89 | 4+ | C89:C4 | 356,3 |
C2xC178 | Abelian group of type [2,178] | 356 | C2xC178 | 356,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C357 | Cyclic group | 357 | 1 | C357 | 357,2 |
C17xC7:C3 | Direct product of C17 and C7:C3 | 119 | 3 | C17xC7:C3 | 357,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C358 | Cyclic group | 358 | 1 | C358 | 358,2 |
D179 | Dihedral group | 179 | 2+ | D179 | 358,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C359 | Cyclic group | 359 | 1 | C359 | 359,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C361 | Cyclic group | 361 | 1 | C361 | 361,1 |
C192 | Elementary abelian group of type [19,19] | 361 | C19^2 | 361,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C362 | Cyclic group | 362 | 1 | C362 | 362,2 |
D181 | Dihedral group | 181 | 2+ | D181 | 362,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C363 | Cyclic group | 363 | 1 | C363 | 363,1 |
C11xC33 | Abelian group of type [11,33] | 363 | C11xC33 | 363,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C364 | Cyclic group | 364 | 1 | C364 | 364,4 |
D182 | Dihedral group; = C2xD91 | 182 | 2+ | D182 | 364,10 |
Dic91 | Dicyclic group; = C91:3C4 | 364 | 2- | Dic91 | 364,3 |
C91:C4 | 1st semidirect product of C91 and C4 acting faithfully | 91 | 4 | C91:C4 | 364,6 |
C2xC182 | Abelian group of type [2,182] | 364 | C2xC182 | 364,11 | |
D7xC26 | Direct product of C26 and D7 | 182 | 2 | D7xC26 | 364,9 |
C14xD13 | Direct product of C14 and D13 | 182 | 2 | C14xD13 | 364,8 |
C13xDic7 | Direct product of C13 and Dic7 | 364 | 2 | C13xDic7 | 364,1 |
C7xDic13 | Direct product of C7 and Dic13 | 364 | 2 | C7xDic13 | 364,2 |
C7xC13:C4 | Direct product of C7 and C13:C4 | 91 | 4 | C7xC13:C4 | 364,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C365 | Cyclic group | 365 | 1 | C365 | 365,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C366 | Cyclic group | 366 | 1 | C366 | 366,6 |
D183 | Dihedral group | 183 | 2+ | D183 | 366,5 |
C61:C6 | The semidirect product of C61 and C6 acting faithfully | 61 | 6+ | C61:C6 | 366,1 |
S3xC61 | Direct product of C61 and S3 | 183 | 2 | S3xC61 | 366,3 |
C3xD61 | Direct product of C3 and D61 | 183 | 2 | C3xD61 | 366,4 |
C2xC61:C3 | Direct product of C2 and C61:C3 | 122 | 3 | C2xC61:C3 | 366,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C367 | Cyclic group | 367 | 1 | C367 | 367,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C369 | Cyclic group | 369 | 1 | C369 | 369,1 |
C3xC123 | Abelian group of type [3,123] | 369 | C3xC123 | 369,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C370 | Cyclic group | 370 | 1 | C370 | 370,4 |
D185 | Dihedral group | 185 | 2+ | D185 | 370,3 |
D5xC37 | Direct product of C37 and D5 | 185 | 2 | D5xC37 | 370,1 |
C5xD37 | Direct product of C5 and D37 | 185 | 2 | C5xD37 | 370,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C371 | Cyclic group | 371 | 1 | C371 | 371,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C372 | Cyclic group | 372 | 1 | C372 | 372,6 |
D186 | Dihedral group; = C2xD93 | 186 | 2+ | D186 | 372,14 |
Dic93 | Dicyclic group; = C93:1C4 | 372 | 2- | Dic93 | 372,5 |
C31:C12 | The semidirect product of C31 and C12 acting via C12/C2=C6 | 124 | 6- | C31:C12 | 372,1 |
C2xC186 | Abelian group of type [2,186] | 372 | C2xC186 | 372,15 | |
S3xC62 | Direct product of C62 and S3 | 186 | 2 | S3xC62 | 372,13 |
C6xD31 | Direct product of C6 and D31 | 186 | 2 | C6xD31 | 372,12 |
Dic3xC31 | Direct product of C31 and Dic3 | 372 | 2 | Dic3xC31 | 372,3 |
C3xDic31 | Direct product of C3 and Dic31 | 372 | 2 | C3xDic31 | 372,4 |
C2xC31:C6 | Direct product of C2 and C31:C6 | 62 | 6+ | C2xC31:C6 | 372,7 |
C4xC31:C3 | Direct product of C4 and C31:C3 | 124 | 3 | C4xC31:C3 | 372,2 |
C22xC31:C3 | Direct product of C22 and C31:C3 | 124 | C2^2xC31:C3 | 372,9 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C373 | Cyclic group | 373 | 1 | C373 | 373,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C374 | Cyclic group | 374 | 1 | C374 | 374,4 |
D187 | Dihedral group | 187 | 2+ | D187 | 374,3 |
C17xD11 | Direct product of C17 and D11 | 187 | 2 | C17xD11 | 374,1 |
C11xD17 | Direct product of C11 and D17 | 187 | 2 | C11xD17 | 374,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C375 | Cyclic group | 375 | 1 | C375 | 375,1 |
C5xC75 | Abelian group of type [5,75] | 375 | C5xC75 | 375,3 | |
C3x5- 1+2 | Direct product of C3 and 5- 1+2 | 75 | 5 | C3xES-(5,1) | 375,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C376 | Cyclic group | 376 | 1 | C376 | 376,2 |
D188 | Dihedral group | 188 | 2+ | D188 | 376,5 |
Dic94 | Dicyclic group; = C47:Q8 | 376 | 2- | Dic94 | 376,3 |
C47:C8 | The semidirect product of C47 and C8 acting via C8/C4=C2 | 376 | 2 | C47:C8 | 376,1 |
C2xC188 | Abelian group of type [2,188] | 376 | C2xC188 | 376,8 | |
C4xD47 | Direct product of C4 and D47 | 188 | 2 | C4xD47 | 376,4 |
D4xC47 | Direct product of C47 and D4 | 188 | 2 | D4xC47 | 376,9 |
Q8xC47 | Direct product of C47 and Q8 | 376 | 2 | Q8xC47 | 376,10 |
C2xDic47 | Direct product of C2 and Dic47 | 376 | C2xDic47 | 376,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C377 | Cyclic group | 377 | 1 | C377 | 377,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C379 | Cyclic group | 379 | 1 | C379 | 379,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C380 | Cyclic group | 380 | 1 | C380 | 380,4 |
D190 | Dihedral group; = C2xD95 | 190 | 2+ | D190 | 380,10 |
Dic95 | Dicyclic group; = C95:3C4 | 380 | 2- | Dic95 | 380,3 |
C19:F5 | The semidirect product of C19 and F5 acting via F5/D5=C2 | 95 | 4 | C19:F5 | 380,6 |
C2xC190 | Abelian group of type [2,190] | 380 | C2xC190 | 380,11 | |
C19xF5 | Direct product of C19 and F5 | 95 | 4 | C19xF5 | 380,5 |
D5xC38 | Direct product of C38 and D5 | 190 | 2 | D5xC38 | 380,9 |
C10xD19 | Direct product of C10 and D19 | 190 | 2 | C10xD19 | 380,8 |
C19xDic5 | Direct product of C19 and Dic5 | 380 | 2 | C19xDic5 | 380,1 |
C5xDic19 | Direct product of C5 and Dic19 | 380 | 2 | C5xDic19 | 380,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C381 | Cyclic group | 381 | 1 | C381 | 381,2 |
C127:C3 | The semidirect product of C127 and C3 acting faithfully | 127 | 3 | C127:C3 | 381,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C382 | Cyclic group | 382 | 1 | C382 | 382,2 |
D191 | Dihedral group | 191 | 2+ | D191 | 382,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C383 | Cyclic group | 383 | 1 | C383 | 383,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C385 | Cyclic group | 385 | 1 | C385 | 385,2 |
C7xC11:C5 | Direct product of C7 and C11:C5 | 77 | 5 | C7xC11:C5 | 385,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C386 | Cyclic group | 386 | 1 | C386 | 386,2 |
D193 | Dihedral group | 193 | 2+ | D193 | 386,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C387 | Cyclic group | 387 | 1 | C387 | 387,2 |
C43:C9 | The semidirect product of C43 and C9 acting via C9/C3=C3 | 387 | 3 | C43:C9 | 387,1 |
C3xC129 | Abelian group of type [3,129] | 387 | C3xC129 | 387,4 | |
C3xC43:C3 | Direct product of C3 and C43:C3 | 129 | 3 | C3xC43:C3 | 387,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C388 | Cyclic group | 388 | 1 | C388 | 388,2 |
D194 | Dihedral group; = C2xD97 | 194 | 2+ | D194 | 388,4 |
Dic97 | Dicyclic group; = C97:2C4 | 388 | 2- | Dic97 | 388,1 |
C97:C4 | The semidirect product of C97 and C4 acting faithfully | 97 | 4+ | C97:C4 | 388,3 |
C2xC194 | Abelian group of type [2,194] | 388 | C2xC194 | 388,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C389 | Cyclic group | 389 | 1 | C389 | 389,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C390 | Cyclic group | 390 | 1 | C390 | 390,12 |
D195 | Dihedral group | 195 | 2+ | D195 | 390,11 |
D65:C3 | The semidirect product of D65 and C3 acting faithfully | 65 | 6+ | D65:C3 | 390,3 |
S3xC65 | Direct product of C65 and S3 | 195 | 2 | S3xC65 | 390,8 |
D5xC39 | Direct product of C39 and D5 | 195 | 2 | D5xC39 | 390,6 |
C3xD65 | Direct product of C3 and D65 | 195 | 2 | C3xD65 | 390,7 |
C5xD39 | Direct product of C5 and D39 | 195 | 2 | C5xD39 | 390,9 |
C15xD13 | Direct product of C15 and D13 | 195 | 2 | C15xD13 | 390,5 |
C13xD15 | Direct product of C13 and D15 | 195 | 2 | C13xD15 | 390,10 |
C5xC13:C6 | Direct product of C5 and C13:C6 | 65 | 6 | C5xC13:C6 | 390,1 |
D5xC13:C3 | Direct product of D5 and C13:C3 | 65 | 6 | D5xC13:C3 | 390,2 |
C10xC13:C3 | Direct product of C10 and C13:C3 | 130 | 3 | C10xC13:C3 | 390,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C391 | Cyclic group | 391 | 1 | C391 | 391,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C392 | Cyclic group | 392 | 1 | C392 | 392,2 |
D196 | Dihedral group | 196 | 2+ | D196 | 392,5 |
Dic98 | Dicyclic group; = C49:Q8 | 392 | 2- | Dic98 | 392,3 |
C49:C8 | The semidirect product of C49 and C8 acting via C8/C4=C2 | 392 | 2 | C49:C8 | 392,1 |
C7xC56 | Abelian group of type [7,56] | 392 | C7xC56 | 392,16 | |
C2xC196 | Abelian group of type [2,196] | 392 | C2xC196 | 392,8 | |
C14xC28 | Abelian group of type [14,28] | 392 | C14xC28 | 392,33 | |
D7xC28 | Direct product of C28 and D7 | 56 | 2 | D7xC28 | 392,24 |
C7xD28 | Direct product of C7 and D28 | 56 | 2 | C7xD28 | 392,25 |
C7xDic14 | Direct product of C7 and Dic14 | 56 | 2 | C7xDic14 | 392,23 |
C14xDic7 | Direct product of C14 and Dic7 | 56 | C14xDic7 | 392,26 | |
C4xD49 | Direct product of C4 and D49 | 196 | 2 | C4xD49 | 392,4 |
D4xC49 | Direct product of C49 and D4 | 196 | 2 | D4xC49 | 392,9 |
D4xC72 | Direct product of C72 and D4 | 196 | D4xC7^2 | 392,34 | |
Q8xC49 | Direct product of C49 and Q8 | 392 | 2 | Q8xC49 | 392,10 |
Q8xC72 | Direct product of C72 and Q8 | 392 | Q8xC7^2 | 392,35 | |
C2xDic49 | Direct product of C2 and Dic49 | 392 | C2xDic49 | 392,6 | |
C7xC7:C8 | Direct product of C7 and C7:C8 | 56 | 2 | C7xC7:C8 | 392,14 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C393 | Cyclic group | 393 | 1 | C393 | 393,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C394 | Cyclic group | 394 | 1 | C394 | 394,2 |
D197 | Dihedral group | 197 | 2+ | D197 | 394,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C395 | Cyclic group | 395 | 1 | C395 | 395,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C396 | Cyclic group | 396 | 1 | C396 | 396,4 |
D198 | Dihedral group; = C2xD99 | 198 | 2+ | D198 | 396,9 |
Dic99 | Dicyclic group; = C99:1C4 | 396 | 2- | Dic99 | 396,3 |
C6xC66 | Abelian group of type [6,66] | 396 | C6xC66 | 396,30 | |
C2xC198 | Abelian group of type [2,198] | 396 | C2xC198 | 396,10 | |
C3xC132 | Abelian group of type [3,132] | 396 | C3xC132 | 396,16 | |
S3xC66 | Direct product of C66 and S3 | 132 | 2 | S3xC66 | 396,26 |
C6xD33 | Direct product of C6 and D33 | 132 | 2 | C6xD33 | 396,27 |
Dic3xC33 | Direct product of C33 and Dic3 | 132 | 2 | Dic3xC33 | 396,12 |
C3xDic33 | Direct product of C3 and Dic33 | 132 | 2 | C3xDic33 | 396,13 |
D9xC22 | Direct product of C22 and D9 | 198 | 2 | D9xC22 | 396,8 |
C18xD11 | Direct product of C18 and D11 | 198 | 2 | C18xD11 | 396,7 |
C11xDic9 | Direct product of C11 and Dic9 | 396 | 2 | C11xDic9 | 396,1 |
C9xDic11 | Direct product of C9 and Dic11 | 396 | 2 | C9xDic11 | 396,2 |
C32xDic11 | Direct product of C32 and Dic11 | 396 | C3^2xDic11 | 396,11 | |
C3xC6xD11 | Direct product of C3xC6 and D11 | 198 | C3xC6xD11 | 396,25 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C397 | Cyclic group | 397 | 1 | C397 | 397,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C398 | Cyclic group | 398 | 1 | C398 | 398,2 |
D199 | Dihedral group | 199 | 2+ | D199 | 398,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C399 | Cyclic group | 399 | 1 | C399 | 399,5 |
C133:C3 | 3rd semidirect product of C133 and C3 acting faithfully | 133 | 3 | C133:C3 | 399,3 |
C133:4C3 | 4th semidirect product of C133 and C3 acting faithfully | 133 | 3 | C133:4C3 | 399,4 |
C19xC7:C3 | Direct product of C19 and C7:C3 | 133 | 3 | C19xC7:C3 | 399,1 |
C7xC19:C3 | Direct product of C7 and C19:C3 | 133 | 3 | C7xC19:C3 | 399,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C401 | Cyclic group | 401 | 1 | C401 | 401,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C402 | Cyclic group | 402 | 1 | C402 | 402,6 |
D201 | Dihedral group | 201 | 2+ | D201 | 402,5 |
C67:C6 | The semidirect product of C67 and C6 acting faithfully | 67 | 6+ | C67:C6 | 402,1 |
S3xC67 | Direct product of C67 and S3 | 201 | 2 | S3xC67 | 402,3 |
C3xD67 | Direct product of C3 and D67 | 201 | 2 | C3xD67 | 402,4 |
C2xC67:C3 | Direct product of C2 and C67:C3 | 134 | 3 | C2xC67:C3 | 402,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C403 | Cyclic group | 403 | 1 | C403 | 403,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C404 | Cyclic group | 404 | 1 | C404 | 404,2 |
D202 | Dihedral group; = C2xD101 | 202 | 2+ | D202 | 404,4 |
Dic101 | Dicyclic group; = C101:2C4 | 404 | 2- | Dic101 | 404,1 |
C101:C4 | The semidirect product of C101 and C4 acting faithfully | 101 | 4+ | C101:C4 | 404,3 |
C2xC202 | Abelian group of type [2,202] | 404 | C2xC202 | 404,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C405 | Cyclic group | 405 | 1 | C405 | 405,1 |
C9xC45 | Abelian group of type [9,45] | 405 | C9xC45 | 405,2 | |
C3xC135 | Abelian group of type [3,135] | 405 | C3xC135 | 405,5 | |
C5xC27:C3 | Direct product of C5 and C27:C3 | 135 | 3 | C5xC27:C3 | 405,6 |
C5xC9:C9 | Direct product of C5 and C9:C9 | 405 | C5xC9:C9 | 405,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C406 | Cyclic group | 406 | 1 | C406 | 406,6 |
D203 | Dihedral group | 203 | 2+ | D203 | 406,5 |
C29:C14 | The semidirect product of C29 and C14 acting faithfully | 29 | 14+ | C29:C14 | 406,1 |
D7xC29 | Direct product of C29 and D7 | 203 | 2 | D7xC29 | 406,3 |
C7xD29 | Direct product of C7 and D29 | 203 | 2 | C7xD29 | 406,4 |
C2xC29:C7 | Direct product of C2 and C29:C7 | 58 | 7 | C2xC29:C7 | 406,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C407 | Cyclic group | 407 | 1 | C407 | 407,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C409 | Cyclic group | 409 | 1 | C409 | 409,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C410 | Cyclic group | 410 | 1 | C410 | 410,6 |
D205 | Dihedral group | 205 | 2+ | D205 | 410,5 |
C41:C10 | The semidirect product of C41 and C10 acting faithfully | 41 | 10+ | C41:C10 | 410,1 |
D5xC41 | Direct product of C41 and D5 | 205 | 2 | D5xC41 | 410,3 |
C5xD41 | Direct product of C5 and D41 | 205 | 2 | C5xD41 | 410,4 |
C2xC41:C5 | Direct product of C2 and C41:C5 | 82 | 5 | C2xC41:C5 | 410,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C411 | Cyclic group | 411 | 1 | C411 | 411,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C412 | Cyclic group | 412 | 1 | C412 | 412,2 |
D206 | Dihedral group; = C2xD103 | 206 | 2+ | D206 | 412,3 |
Dic103 | Dicyclic group; = C103:C4 | 412 | 2- | Dic103 | 412,1 |
C2xC206 | Abelian group of type [2,206] | 412 | C2xC206 | 412,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C413 | Cyclic group | 413 | 1 | C413 | 413,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C414 | Cyclic group | 414 | 1 | C414 | 414,4 |
D207 | Dihedral group | 207 | 2+ | D207 | 414,3 |
C3xC138 | Abelian group of type [3,138] | 414 | C3xC138 | 414,10 | |
S3xC69 | Direct product of C69 and S3 | 138 | 2 | S3xC69 | 414,6 |
C3xD69 | Direct product of C3 and D69 | 138 | 2 | C3xD69 | 414,7 |
D9xC23 | Direct product of C23 and D9 | 207 | 2 | D9xC23 | 414,1 |
C9xD23 | Direct product of C9 and D23 | 207 | 2 | C9xD23 | 414,2 |
C32xD23 | Direct product of C32 and D23 | 207 | C3^2xD23 | 414,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C415 | Cyclic group | 415 | 1 | C415 | 415,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C417 | Cyclic group | 417 | 1 | C417 | 417,2 |
C139:C3 | The semidirect product of C139 and C3 acting faithfully | 139 | 3 | C139:C3 | 417,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C418 | Cyclic group | 418 | 1 | C418 | 418,4 |
D209 | Dihedral group | 209 | 2+ | D209 | 418,3 |
C19xD11 | Direct product of C19 and D11 | 209 | 2 | C19xD11 | 418,1 |
C11xD19 | Direct product of C11 and D19 | 209 | 2 | C11xD19 | 418,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C419 | Cyclic group | 419 | 1 | C419 | 419,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C421 | Cyclic group | 421 | 1 | C421 | 421,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C422 | Cyclic group | 422 | 1 | C422 | 422,2 |
D211 | Dihedral group | 211 | 2+ | D211 | 422,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C423 | Cyclic group | 423 | 1 | C423 | 423,1 |
C3xC141 | Abelian group of type [3,141] | 423 | C3xC141 | 423,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C424 | Cyclic group | 424 | 1 | C424 | 424,2 |
D212 | Dihedral group | 212 | 2+ | D212 | 424,6 |
Dic106 | Dicyclic group; = C53:Q8 | 424 | 2- | Dic106 | 424,4 |
C53:C8 | The semidirect product of C53 and C8 acting via C8/C2=C4 | 424 | 4- | C53:C8 | 424,3 |
C53:2C8 | The semidirect product of C53 and C8 acting via C8/C4=C2 | 424 | 2 | C53:2C8 | 424,1 |
C2xC212 | Abelian group of type [2,212] | 424 | C2xC212 | 424,9 | |
C4xD53 | Direct product of C4 and D53 | 212 | 2 | C4xD53 | 424,5 |
D4xC53 | Direct product of C53 and D4 | 212 | 2 | D4xC53 | 424,10 |
Q8xC53 | Direct product of C53 and Q8 | 424 | 2 | Q8xC53 | 424,11 |
C2xDic53 | Direct product of C2 and Dic53 | 424 | C2xDic53 | 424,7 | |
C2xC53:C4 | Direct product of C2 and C53:C4 | 106 | 4+ | C2xC53:C4 | 424,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C425 | Cyclic group | 425 | 1 | C425 | 425,1 |
C5xC85 | Abelian group of type [5,85] | 425 | C5xC85 | 425,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C426 | Cyclic group | 426 | 1 | C426 | 426,4 |
D213 | Dihedral group | 213 | 2+ | D213 | 426,3 |
S3xC71 | Direct product of C71 and S3 | 213 | 2 | S3xC71 | 426,1 |
C3xD71 | Direct product of C3 and D71 | 213 | 2 | C3xD71 | 426,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C427 | Cyclic group | 427 | 1 | C427 | 427,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C428 | Cyclic group | 428 | 1 | C428 | 428,2 |
D214 | Dihedral group; = C2xD107 | 214 | 2+ | D214 | 428,3 |
Dic107 | Dicyclic group; = C107:C4 | 428 | 2- | Dic107 | 428,1 |
C2xC214 | Abelian group of type [2,214] | 428 | C2xC214 | 428,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C429 | Cyclic group | 429 | 1 | C429 | 429,2 |
C11xC13:C3 | Direct product of C11 and C13:C3 | 143 | 3 | C11xC13:C3 | 429,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C430 | Cyclic group | 430 | 1 | C430 | 430,4 |
D215 | Dihedral group | 215 | 2+ | D215 | 430,3 |
D5xC43 | Direct product of C43 and D5 | 215 | 2 | D5xC43 | 430,1 |
C5xD43 | Direct product of C5 and D43 | 215 | 2 | C5xD43 | 430,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C431 | Cyclic group | 431 | 1 | C431 | 431,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C433 | Cyclic group | 433 | 1 | C433 | 433,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C434 | Cyclic group | 434 | 1 | C434 | 434,4 |
D217 | Dihedral group | 217 | 2+ | D217 | 434,3 |
D7xC31 | Direct product of C31 and D7 | 217 | 2 | D7xC31 | 434,1 |
C7xD31 | Direct product of C7 and D31 | 217 | 2 | C7xD31 | 434,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C435 | Cyclic group | 435 | 1 | C435 | 435,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C436 | Cyclic group | 436 | 1 | C436 | 436,2 |
D218 | Dihedral group; = C2xD109 | 218 | 2+ | D218 | 436,4 |
Dic109 | Dicyclic group; = C109:2C4 | 436 | 2- | Dic109 | 436,1 |
C109:C4 | The semidirect product of C109 and C4 acting faithfully | 109 | 4+ | C109:C4 | 436,3 |
C2xC218 | Abelian group of type [2,218] | 436 | C2xC218 | 436,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C437 | Cyclic group | 437 | 1 | C437 | 437,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C438 | Cyclic group | 438 | 1 | C438 | 438,6 |
D219 | Dihedral group | 219 | 2+ | D219 | 438,5 |
C73:C6 | The semidirect product of C73 and C6 acting faithfully | 73 | 6+ | C73:C6 | 438,1 |
S3xC73 | Direct product of C73 and S3 | 219 | 2 | S3xC73 | 438,3 |
C3xD73 | Direct product of C3 and D73 | 219 | 2 | C3xD73 | 438,4 |
C2xC73:C3 | Direct product of C2 and C73:C3 | 146 | 3 | C2xC73:C3 | 438,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C439 | Cyclic group | 439 | 1 | C439 | 439,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C441 | Cyclic group | 441 | 1 | C441 | 441,2 |
C49:C9 | The semidirect product of C49 and C9 acting via C9/C3=C3 | 441 | 3 | C49:C9 | 441,1 |
C212 | Abelian group of type [21,21] | 441 | C21^2 | 441,13 | |
C7xC63 | Abelian group of type [7,63] | 441 | C7xC63 | 441,8 | |
C3xC147 | Abelian group of type [3,147] | 441 | C3xC147 | 441,4 | |
C7xC7:C9 | Direct product of C7 and C7:C9 | 63 | 3 | C7xC7:C9 | 441,5 |
C7:C3xC21 | Direct product of C21 and C7:C3 | 63 | 3 | C7:C3xC21 | 441,10 |
C3xC49:C3 | Direct product of C3 and C49:C3 | 147 | 3 | C3xC49:C3 | 441,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C442 | Cyclic group | 442 | 1 | C442 | 442,4 |
D221 | Dihedral group | 221 | 2+ | D221 | 442,3 |
C17xD13 | Direct product of C17 and D13 | 221 | 2 | C17xD13 | 442,1 |
C13xD17 | Direct product of C13 and D17 | 221 | 2 | C13xD17 | 442,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C443 | Cyclic group | 443 | 1 | C443 | 443,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C444 | Cyclic group | 444 | 1 | C444 | 444,6 |
D222 | Dihedral group; = C2xD111 | 222 | 2+ | D222 | 444,17 |
Dic111 | Dicyclic group; = C3:Dic37 | 444 | 2- | Dic111 | 444,5 |
C37:C12 | The semidirect product of C37 and C12 acting faithfully | 37 | 12+ | C37:C12 | 444,7 |
C37:Dic3 | The semidirect product of C37 and Dic3 acting via Dic3/C3=C4 | 111 | 4 | C37:Dic3 | 444,10 |
C74.C6 | The non-split extension by C74 of C6 acting faithfully | 148 | 6- | C74.C6 | 444,1 |
C2xC222 | Abelian group of type [2,222] | 444 | C2xC222 | 444,18 | |
S3xC74 | Direct product of C74 and S3 | 222 | 2 | S3xC74 | 444,16 |
C6xD37 | Direct product of C6 and D37 | 222 | 2 | C6xD37 | 444,15 |
Dic3xC37 | Direct product of C37 and Dic3 | 444 | 2 | Dic3xC37 | 444,3 |
C3xDic37 | Direct product of C3 and Dic37 | 444 | 2 | C3xDic37 | 444,4 |
C2xC37:C6 | Direct product of C2 and C37:C6 | 74 | 6+ | C2xC37:C6 | 444,8 |
C3xC37:C4 | Direct product of C3 and C37:C4 | 111 | 4 | C3xC37:C4 | 444,9 |
C4xC37:C3 | Direct product of C4 and C37:C3 | 148 | 3 | C4xC37:C3 | 444,2 |
C22xC37:C3 | Direct product of C22 and C37:C3 | 148 | C2^2xC37:C3 | 444,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C445 | Cyclic group | 445 | 1 | C445 | 445,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C446 | Cyclic group | 446 | 1 | C446 | 446,2 |
D223 | Dihedral group | 223 | 2+ | D223 | 446,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C447 | Cyclic group | 447 | 1 | C447 | 447,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C449 | Cyclic group | 449 | 1 | C449 | 449,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C450 | Cyclic group | 450 | 1 | C450 | 450,4 |
D225 | Dihedral group | 225 | 2+ | D225 | 450,3 |
C5xC90 | Abelian group of type [5,90] | 450 | C5xC90 | 450,19 | |
C3xC150 | Abelian group of type [3,150] | 450 | C3xC150 | 450,10 | |
C15xC30 | Abelian group of type [15,30] | 450 | C15xC30 | 450,34 | |
C15xD15 | Direct product of C15 and D15 | 30 | 2 | C15xD15 | 450,29 |
D5xC45 | Direct product of C45 and D5 | 90 | 2 | D5xC45 | 450,14 |
C5xD45 | Direct product of C5 and D45 | 90 | 2 | C5xD45 | 450,17 |
S3xC75 | Direct product of C75 and S3 | 150 | 2 | S3xC75 | 450,6 |
C3xD75 | Direct product of C3 and D75 | 150 | 2 | C3xD75 | 450,7 |
D9xC25 | Direct product of C25 and D9 | 225 | 2 | D9xC25 | 450,1 |
C9xD25 | Direct product of C9 and D25 | 225 | 2 | C9xD25 | 450,2 |
D9xC52 | Direct product of C52 and D9 | 225 | D9xC5^2 | 450,16 | |
C32xD25 | Direct product of C32 and D25 | 225 | C3^2xD25 | 450,5 | |
D5xC3xC15 | Direct product of C3xC15 and D5 | 90 | D5xC3xC15 | 450,26 | |
S3xC5xC15 | Direct product of C5xC15 and S3 | 150 | S3xC5xC15 | 450,28 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C451 | Cyclic group | 451 | 1 | C451 | 451,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C452 | Cyclic group | 452 | 1 | C452 | 452,2 |
D226 | Dihedral group; = C2xD113 | 226 | 2+ | D226 | 452,4 |
Dic113 | Dicyclic group; = C113:2C4 | 452 | 2- | Dic113 | 452,1 |
C113:C4 | The semidirect product of C113 and C4 acting faithfully | 113 | 4+ | C113:C4 | 452,3 |
C2xC226 | Abelian group of type [2,226] | 452 | C2xC226 | 452,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C453 | Cyclic group | 453 | 1 | C453 | 453,2 |
C151:C3 | The semidirect product of C151 and C3 acting faithfully | 151 | 3 | C151:C3 | 453,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C454 | Cyclic group | 454 | 1 | C454 | 454,2 |
D227 | Dihedral group | 227 | 2+ | D227 | 454,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C455 | Cyclic group | 455 | 1 | C455 | 455,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C457 | Cyclic group | 457 | 1 | C457 | 457,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C458 | Cyclic group | 458 | 1 | C458 | 458,2 |
D229 | Dihedral group | 229 | 2+ | D229 | 458,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C459 | Cyclic group | 459 | 1 | C459 | 459,1 |
C3xC153 | Abelian group of type [3,153] | 459 | C3xC153 | 459,2 | |
C17x3- 1+2 | Direct product of C17 and 3- 1+2 | 153 | 3 | C17xES-(3,1) | 459,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C460 | Cyclic group | 460 | 1 | C460 | 460,4 |
D230 | Dihedral group; = C2xD115 | 230 | 2+ | D230 | 460,10 |
Dic115 | Dicyclic group; = C23:Dic5 | 460 | 2- | Dic115 | 460,3 |
C23:F5 | The semidirect product of C23 and F5 acting via F5/D5=C2 | 115 | 4 | C23:F5 | 460,6 |
C2xC230 | Abelian group of type [2,230] | 460 | C2xC230 | 460,11 | |
F5xC23 | Direct product of C23 and F5 | 115 | 4 | F5xC23 | 460,5 |
D5xC46 | Direct product of C46 and D5 | 230 | 2 | D5xC46 | 460,9 |
C10xD23 | Direct product of C10 and D23 | 230 | 2 | C10xD23 | 460,8 |
Dic5xC23 | Direct product of C23 and Dic5 | 460 | 2 | Dic5xC23 | 460,1 |
C5xDic23 | Direct product of C5 and Dic23 | 460 | 2 | C5xDic23 | 460,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C461 | Cyclic group | 461 | 1 | C461 | 461,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C462 | Cyclic group | 462 | 1 | C462 | 462,12 |
D231 | Dihedral group | 231 | 2+ | D231 | 462,11 |
C11:F7 | The semidirect product of C11 and F7 acting via F7/C7:C3=C2 | 77 | 6+ | C11:F7 | 462,3 |
C11xF7 | Direct product of C11 and F7 | 77 | 6 | C11xF7 | 462,2 |
S3xC77 | Direct product of C77 and S3 | 231 | 2 | S3xC77 | 462,8 |
D7xC33 | Direct product of C33 and D7 | 231 | 2 | D7xC33 | 462,6 |
C3xD77 | Direct product of C3 and D77 | 231 | 2 | C3xD77 | 462,7 |
C7xD33 | Direct product of C7 and D33 | 231 | 2 | C7xD33 | 462,9 |
C21xD11 | Direct product of C21 and D11 | 231 | 2 | C21xD11 | 462,5 |
C11xD21 | Direct product of C11 and D21 | 231 | 2 | C11xD21 | 462,10 |
C7:C3xD11 | Direct product of C7:C3 and D11 | 77 | 6 | C7:C3xD11 | 462,1 |
C7:C3xC22 | Direct product of C22 and C7:C3 | 154 | 3 | C7:C3xC22 | 462,4 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C463 | Cyclic group | 463 | 1 | C463 | 463,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C465 | Cyclic group | 465 | 1 | C465 | 465,4 |
C31:C15 | The semidirect product of C31 and C15 acting faithfully | 31 | 15 | C31:C15 | 465,1 |
C3xC31:C5 | Direct product of C3 and C31:C5 | 93 | 5 | C3xC31:C5 | 465,2 |
C5xC31:C3 | Direct product of C5 and C31:C3 | 155 | 3 | C5xC31:C3 | 465,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C466 | Cyclic group | 466 | 1 | C466 | 466,2 |
D233 | Dihedral group | 233 | 2+ | D233 | 466,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C467 | Cyclic group | 467 | 1 | C467 | 467,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C469 | Cyclic group | 469 | 1 | C469 | 469,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C470 | Cyclic group | 470 | 1 | C470 | 470,4 |
D235 | Dihedral group | 235 | 2+ | D235 | 470,3 |
D5xC47 | Direct product of C47 and D5 | 235 | 2 | D5xC47 | 470,1 |
C5xD47 | Direct product of C5 and D47 | 235 | 2 | C5xD47 | 470,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C471 | Cyclic group | 471 | 1 | C471 | 471,2 |
C157:C3 | The semidirect product of C157 and C3 acting faithfully | 157 | 3 | C157:C3 | 471,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C472 | Cyclic group | 472 | 1 | C472 | 472,2 |
D236 | Dihedral group | 236 | 2+ | D236 | 472,5 |
Dic118 | Dicyclic group; = C59:Q8 | 472 | 2- | Dic118 | 472,3 |
C59:C8 | The semidirect product of C59 and C8 acting via C8/C4=C2 | 472 | 2 | C59:C8 | 472,1 |
C2xC236 | Abelian group of type [2,236] | 472 | C2xC236 | 472,8 | |
C4xD59 | Direct product of C4 and D59 | 236 | 2 | C4xD59 | 472,4 |
D4xC59 | Direct product of C59 and D4 | 236 | 2 | D4xC59 | 472,9 |
Q8xC59 | Direct product of C59 and Q8 | 472 | 2 | Q8xC59 | 472,10 |
C2xDic59 | Direct product of C2 and Dic59 | 472 | C2xDic59 | 472,6 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C473 | Cyclic group | 473 | 1 | C473 | 473,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C474 | Cyclic group | 474 | 1 | C474 | 474,6 |
D237 | Dihedral group | 237 | 2+ | D237 | 474,5 |
C79:C6 | The semidirect product of C79 and C6 acting faithfully | 79 | 6+ | C79:C6 | 474,1 |
S3xC79 | Direct product of C79 and S3 | 237 | 2 | S3xC79 | 474,3 |
C3xD79 | Direct product of C3 and D79 | 237 | 2 | C3xD79 | 474,4 |
C2xC79:C3 | Direct product of C2 and C79:C3 | 158 | 3 | C2xC79:C3 | 474,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C475 | Cyclic group | 475 | 1 | C475 | 475,1 |
C5xC95 | Abelian group of type [5,95] | 475 | C5xC95 | 475,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C476 | Cyclic group | 476 | 1 | C476 | 476,4 |
D238 | Dihedral group; = C2xD119 | 238 | 2+ | D238 | 476,10 |
Dic119 | Dicyclic group; = C7:Dic17 | 476 | 2- | Dic119 | 476,3 |
C17:Dic7 | The semidirect product of C17 and Dic7 acting via Dic7/C7=C4 | 119 | 4 | C17:Dic7 | 476,6 |
C2xC238 | Abelian group of type [2,238] | 476 | C2xC238 | 476,11 | |
D7xC34 | Direct product of C34 and D7 | 238 | 2 | D7xC34 | 476,9 |
C14xD17 | Direct product of C14 and D17 | 238 | 2 | C14xD17 | 476,8 |
C17xDic7 | Direct product of C17 and Dic7 | 476 | 2 | C17xDic7 | 476,1 |
C7xDic17 | Direct product of C7 and Dic17 | 476 | 2 | C7xDic17 | 476,2 |
C7xC17:C4 | Direct product of C7 and C17:C4 | 119 | 4 | C7xC17:C4 | 476,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C477 | Cyclic group | 477 | 1 | C477 | 477,1 |
C3xC159 | Abelian group of type [3,159] | 477 | C3xC159 | 477,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C478 | Cyclic group | 478 | 1 | C478 | 478,2 |
D239 | Dihedral group | 239 | 2+ | D239 | 478,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C479 | Cyclic group | 479 | 1 | C479 | 479,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C481 | Cyclic group | 481 | 1 | C481 | 481,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C482 | Cyclic group | 482 | 1 | C482 | 482,2 |
D241 | Dihedral group | 241 | 2+ | D241 | 482,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C483 | Cyclic group | 483 | 1 | C483 | 483,2 |
C7:C3xC23 | Direct product of C23 and C7:C3 | 161 | 3 | C7:C3xC23 | 483,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C484 | Cyclic group | 484 | 1 | C484 | 484,2 |
D242 | Dihedral group; = C2xD121 | 242 | 2+ | D242 | 484,3 |
Dic121 | Dicyclic group; = C121:C4 | 484 | 2- | Dic121 | 484,1 |
C222 | Abelian group of type [22,22] | 484 | C22^2 | 484,12 | |
C2xC242 | Abelian group of type [2,242] | 484 | C2xC242 | 484,4 | |
C11xC44 | Abelian group of type [11,44] | 484 | C11xC44 | 484,7 | |
D11xC22 | Direct product of C22 and D11 | 44 | 2 | D11xC22 | 484,10 |
C11xDic11 | Direct product of C11 and Dic11 | 44 | 2 | C11xDic11 | 484,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C485 | Cyclic group | 485 | 1 | C485 | 485,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C486 | Cyclic group | 486 | 1 | C486 | 486,2 |
D243 | Dihedral group | 243 | 2+ | D243 | 486,1 |
C27:C18 | The semidirect product of C27 and C18 acting faithfully; = Aut(D27) = Hol(C27) | 27 | 18+ | C27:C18 | 486,31 |
C9:C54 | The semidirect product of C9 and C54 acting via C54/C9=C6 | 54 | 6 | C9:C54 | 486,30 |
C27:3C18 | The semidirect product of C27 and C18 acting via C18/C3=C6 | 54 | 6 | C27:3C18 | 486,15 |
C81:C6 | The semidirect product of C81 and C6 acting faithfully | 81 | 6+ | C81:C6 | 486,34 |
C9xC54 | Abelian group of type [9,54] | 486 | C9xC54 | 486,70 | |
C3xC162 | Abelian group of type [3,162] | 486 | C3xC162 | 486,83 | |
C9xD27 | Direct product of C9 and D27 | 54 | 2 | C9xD27 | 486,13 |
D9xC27 | Direct product of C27 and D9 | 54 | 2 | D9xC27 | 486,14 |
S3xC81 | Direct product of C81 and S3 | 162 | 2 | S3xC81 | 486,33 |
C3xD81 | Direct product of C3 and D81 | 162 | 2 | C3xD81 | 486,32 |
C2xC27:C9 | Direct product of C2 and C27:C9 | 54 | 9 | C2xC27:C9 | 486,82 |
C2xC81:C3 | Direct product of C2 and C81:C3 | 162 | 3 | C2xC81:C3 | 486,84 |
C2xC9:C27 | Direct product of C2 and C9:C27 | 486 | C2xC9:C27 | 486,81 | |
C2xC27:2C9 | Direct product of C2 and C27:2C9 | 486 | C2xC27:2C9 | 486,71 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C487 | Cyclic group | 487 | 1 | C487 | 487,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C488 | Cyclic group | 488 | 1 | C488 | 488,2 |
D244 | Dihedral group | 244 | 2+ | D244 | 488,6 |
Dic122 | Dicyclic group; = C61:Q8 | 488 | 2- | Dic122 | 488,4 |
C61:C8 | The semidirect product of C61 and C8 acting via C8/C2=C4 | 488 | 4- | C61:C8 | 488,3 |
C61:2C8 | The semidirect product of C61 and C8 acting via C8/C4=C2 | 488 | 2 | C61:2C8 | 488,1 |
C2xC244 | Abelian group of type [2,244] | 488 | C2xC244 | 488,9 | |
C4xD61 | Direct product of C4 and D61 | 244 | 2 | C4xD61 | 488,5 |
D4xC61 | Direct product of C61 and D4 | 244 | 2 | D4xC61 | 488,10 |
Q8xC61 | Direct product of C61 and Q8 | 488 | 2 | Q8xC61 | 488,11 |
C2xDic61 | Direct product of C2 and Dic61 | 488 | C2xDic61 | 488,7 | |
C2xC61:C4 | Direct product of C2 and C61:C4 | 122 | 4+ | C2xC61:C4 | 488,12 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C489 | Cyclic group | 489 | 1 | C489 | 489,2 |
C163:C3 | The semidirect product of C163 and C3 acting faithfully | 163 | 3 | C163:C3 | 489,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C490 | Cyclic group | 490 | 1 | C490 | 490,4 |
D245 | Dihedral group | 245 | 2+ | D245 | 490,3 |
C7xC70 | Abelian group of type [7,70] | 490 | C7xC70 | 490,10 | |
D7xC35 | Direct product of C35 and D7 | 70 | 2 | D7xC35 | 490,5 |
C7xD35 | Direct product of C7 and D35 | 70 | 2 | C7xD35 | 490,8 |
D5xC49 | Direct product of C49 and D5 | 245 | 2 | D5xC49 | 490,1 |
C5xD49 | Direct product of C5 and D49 | 245 | 2 | C5xD49 | 490,2 |
D5xC72 | Direct product of C72 and D5 | 245 | D5xC7^2 | 490,7 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C491 | Cyclic group | 491 | 1 | C491 | 491,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C492 | Cyclic group | 492 | 1 | C492 | 492,4 |
D246 | Dihedral group; = C2xD123 | 246 | 2+ | D246 | 492,11 |
Dic123 | Dicyclic group; = C3:Dic41 | 492 | 2- | Dic123 | 492,3 |
C41:Dic3 | The semidirect product of C41 and Dic3 acting via Dic3/C3=C4 | 123 | 4 | C41:Dic3 | 492,6 |
C2xC246 | Abelian group of type [2,246] | 492 | C2xC246 | 492,12 | |
S3xC82 | Direct product of C82 and S3 | 246 | 2 | S3xC82 | 492,10 |
C6xD41 | Direct product of C6 and D41 | 246 | 2 | C6xD41 | 492,9 |
Dic3xC41 | Direct product of C41 and Dic3 | 492 | 2 | Dic3xC41 | 492,1 |
C3xDic41 | Direct product of C3 and Dic41 | 492 | 2 | C3xDic41 | 492,2 |
C3xC41:C4 | Direct product of C3 and C41:C4 | 123 | 4 | C3xC41:C4 | 492,5 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C493 | Cyclic group | 493 | 1 | C493 | 493,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C494 | Cyclic group | 494 | 1 | C494 | 494,4 |
D247 | Dihedral group | 247 | 2+ | D247 | 494,3 |
C19xD13 | Direct product of C19 and D13 | 247 | 2 | C19xD13 | 494,1 |
C13xD19 | Direct product of C13 and D19 | 247 | 2 | C13xD19 | 494,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C495 | Cyclic group | 495 | 1 | C495 | 495,2 |
C3xC165 | Abelian group of type [3,165] | 495 | C3xC165 | 495,4 | |
C9xC11:C5 | Direct product of C9 and C11:C5 | 99 | 5 | C9xC11:C5 | 495,1 |
C32xC11:C5 | Direct product of C32 and C11:C5 | 99 | C3^2xC11:C5 | 495,3 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C497 | Cyclic group | 497 | 1 | C497 | 497,2 |
C71:C7 | The semidirect product of C71 and C7 acting faithfully | 71 | 7 | C71:C7 | 497,1 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C498 | Cyclic group | 498 | 1 | C498 | 498,4 |
D249 | Dihedral group | 249 | 2+ | D249 | 498,3 |
S3xC83 | Direct product of C83 and S3 | 249 | 2 | S3xC83 | 498,1 |
C3xD83 | Direct product of C3 and D83 | 249 | 2 | C3xD83 | 498,2 |
d | ρ | Label | ID | ||
---|---|---|---|---|---|
C499 | Cyclic group | 499 | 1 | C499 | 499,1 |