metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C61⋊C3, SmallGroup(183,1)
Series: Derived ►Chief ►Lower central ►Upper central
C61 — C61⋊C3 |
Generators and relations for C61⋊C3
G = < a,b | a61=b3=1, bab-1=a13 >
Character table of C61⋊C3
class | 1 | 3A | 3B | 61A | 61B | 61C | 61D | 61E | 61F | 61G | 61H | 61I | 61J | 61K | 61L | 61M | 61N | 61O | 61P | 61Q | 61R | 61S | 61T | |
size | 1 | 61 | 61 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 3 | 0 | 0 | ζ6149+ζ6146+ζ6127 | ζ6145+ζ6141+ζ6136 | ζ6154+ζ6137+ζ6131 | ζ6133+ζ6126+ζ612 | ζ6129+ζ6121+ζ6111 | ζ6125+ζ6120+ζ6116 | ζ6138+ζ6117+ζ616 | ζ6147+ζ6113+ζ61 | ζ6152+ζ615+ζ614 | ζ6158+ζ6142+ζ6122 | ζ6150+ζ6140+ζ6132 | ζ6134+ζ6115+ζ6112 | ζ6130+ζ6124+ζ617 | ζ6160+ζ6148+ζ6114 | ζ6143+ζ6110+ζ618 | ζ6159+ζ6135+ζ6128 | ζ6155+ζ6144+ζ6123 | ζ6139+ζ6119+ζ613 | ζ6157+ζ6156+ζ619 | ζ6153+ζ6151+ζ6118 | complex faithful |
ρ5 | 3 | 0 | 0 | ζ6147+ζ6113+ζ61 | ζ6158+ζ6142+ζ6122 | ζ6133+ζ6126+ζ612 | ζ6143+ζ6110+ζ618 | ζ6155+ζ6144+ζ6123 | ζ6139+ζ6119+ζ613 | ζ6130+ζ6124+ζ617 | ζ6152+ζ615+ζ614 | ζ6125+ζ6120+ζ6116 | ζ6149+ζ6146+ζ6127 | ζ6138+ζ6117+ζ616 | ζ6160+ζ6148+ζ6114 | ζ6159+ζ6135+ζ6128 | ζ6157+ζ6156+ζ619 | ζ6150+ζ6140+ζ6132 | ζ6153+ζ6151+ζ6118 | ζ6154+ζ6137+ζ6131 | ζ6134+ζ6115+ζ6112 | ζ6145+ζ6141+ζ6136 | ζ6129+ζ6121+ζ6111 | complex faithful |
ρ6 | 3 | 0 | 0 | ζ6152+ζ615+ζ614 | ζ6149+ζ6146+ζ6127 | ζ6143+ζ6110+ζ618 | ζ6150+ζ6140+ζ6132 | ζ6154+ζ6137+ζ6131 | ζ6134+ζ6115+ζ6112 | ζ6159+ζ6135+ζ6128 | ζ6125+ζ6120+ζ6116 | ζ6139+ζ6119+ζ613 | ζ6147+ζ6113+ζ61 | ζ6130+ζ6124+ζ617 | ζ6157+ζ6156+ζ619 | ζ6153+ζ6151+ζ6118 | ζ6145+ζ6141+ζ6136 | ζ6138+ζ6117+ζ616 | ζ6129+ζ6121+ζ6111 | ζ6133+ζ6126+ζ612 | ζ6160+ζ6148+ζ6114 | ζ6158+ζ6142+ζ6122 | ζ6155+ζ6144+ζ6123 | complex faithful |
ρ7 | 3 | 0 | 0 | ζ6143+ζ6110+ζ618 | ζ6154+ζ6137+ζ6131 | ζ6125+ζ6120+ζ6116 | ζ6139+ζ6119+ζ613 | ζ6147+ζ6113+ζ61 | ζ6130+ζ6124+ζ617 | ζ6157+ζ6156+ζ619 | ζ6150+ζ6140+ζ6132 | ζ6138+ζ6117+ζ616 | ζ6133+ζ6126+ζ612 | ζ6160+ζ6148+ζ6114 | ζ6153+ζ6151+ζ6118 | ζ6145+ζ6141+ζ6136 | ζ6129+ζ6121+ζ6111 | ζ6134+ζ6115+ζ6112 | ζ6158+ζ6142+ζ6122 | ζ6152+ζ615+ζ614 | ζ6159+ζ6135+ζ6128 | ζ6155+ζ6144+ζ6123 | ζ6149+ζ6146+ζ6127 | complex faithful |
ρ8 | 3 | 0 | 0 | ζ6157+ζ6156+ζ619 | ζ6134+ζ6115+ζ6112 | ζ6153+ζ6151+ζ6118 | ζ6129+ζ6121+ζ6111 | ζ6130+ζ6124+ζ617 | ζ6149+ζ6146+ζ6127 | ζ6133+ζ6126+ζ612 | ζ6145+ζ6141+ζ6136 | ζ6158+ζ6142+ζ6122 | ζ6160+ζ6148+ζ6114 | ζ6154+ζ6137+ζ6131 | ζ6152+ζ615+ζ614 | ζ6143+ζ6110+ζ618 | ζ6125+ζ6120+ζ6116 | ζ6155+ζ6144+ζ6123 | ζ6150+ζ6140+ζ6132 | ζ6159+ζ6135+ζ6128 | ζ6147+ζ6113+ζ61 | ζ6139+ζ6119+ζ613 | ζ6138+ζ6117+ζ616 | complex faithful |
ρ9 | 3 | 0 | 0 | ζ6129+ζ6121+ζ6111 | ζ6159+ζ6135+ζ6128 | ζ6158+ζ6142+ζ6122 | ζ6149+ζ6146+ζ6127 | ζ6157+ζ6156+ζ619 | ζ6133+ζ6126+ζ612 | ζ6125+ζ6120+ζ6116 | ζ6155+ζ6144+ζ6123 | ζ6154+ζ6137+ζ6131 | ζ6153+ζ6151+ζ6118 | ζ6152+ζ615+ζ614 | ζ6150+ζ6140+ζ6132 | ζ6139+ζ6119+ζ613 | ζ6138+ζ6117+ζ616 | ζ6147+ζ6113+ζ61 | ζ6134+ζ6115+ζ6112 | ζ6145+ζ6141+ζ6136 | ζ6143+ζ6110+ζ618 | ζ6130+ζ6124+ζ617 | ζ6160+ζ6148+ζ6114 | complex faithful |
ρ10 | 3 | 0 | 0 | ζ6153+ζ6151+ζ6118 | ζ6130+ζ6124+ζ617 | ζ6145+ζ6141+ζ6136 | ζ6158+ζ6142+ζ6122 | ζ6160+ζ6148+ζ6114 | ζ6154+ζ6137+ζ6131 | ζ6152+ζ615+ζ614 | ζ6129+ζ6121+ζ6111 | ζ6155+ζ6144+ζ6123 | ζ6159+ζ6135+ζ6128 | ζ6147+ζ6113+ζ61 | ζ6143+ζ6110+ζ618 | ζ6125+ζ6120+ζ6116 | ζ6150+ζ6140+ζ6132 | ζ6149+ζ6146+ζ6127 | ζ6139+ζ6119+ζ613 | ζ6157+ζ6156+ζ619 | ζ6133+ζ6126+ζ612 | ζ6138+ζ6117+ζ616 | ζ6134+ζ6115+ζ6112 | complex faithful |
ρ11 | 3 | 0 | 0 | ζ6130+ζ6124+ζ617 | ζ6150+ζ6140+ζ6132 | ζ6160+ζ6148+ζ6114 | ζ6157+ζ6156+ζ619 | ζ6139+ζ6119+ζ613 | ζ6129+ζ6121+ζ6111 | ζ6149+ζ6146+ζ6127 | ζ6159+ζ6135+ζ6128 | ζ6153+ζ6151+ζ6118 | ζ6138+ζ6117+ζ616 | ζ6158+ζ6142+ζ6122 | ζ6154+ζ6137+ζ6131 | ζ6147+ζ6113+ζ61 | ζ6133+ζ6126+ζ612 | ζ6145+ζ6141+ζ6136 | ζ6152+ζ615+ζ614 | ζ6134+ζ6115+ζ6112 | ζ6155+ζ6144+ζ6123 | ζ6143+ζ6110+ζ618 | ζ6125+ζ6120+ζ6116 | complex faithful |
ρ12 | 3 | 0 | 0 | ζ6139+ζ6119+ζ613 | ζ6152+ζ615+ζ614 | ζ6138+ζ6117+ζ616 | ζ6130+ζ6124+ζ617 | ζ6143+ζ6110+ζ618 | ζ6157+ζ6156+ζ619 | ζ6129+ζ6121+ζ6111 | ζ6134+ζ6115+ζ6112 | ζ6160+ζ6148+ζ6114 | ζ6125+ζ6120+ζ6116 | ζ6153+ζ6151+ζ6118 | ζ6158+ζ6142+ζ6122 | ζ6155+ζ6144+ζ6123 | ζ6149+ζ6146+ζ6127 | ζ6159+ζ6135+ζ6128 | ζ6154+ζ6137+ζ6131 | ζ6150+ζ6140+ζ6132 | ζ6145+ζ6141+ζ6136 | ζ6147+ζ6113+ζ61 | ζ6133+ζ6126+ζ612 | complex faithful |
ρ13 | 3 | 0 | 0 | ζ6155+ζ6144+ζ6123 | ζ6153+ζ6151+ζ6118 | ζ6149+ζ6146+ζ6127 | ζ6147+ζ6113+ζ61 | ζ6145+ζ6141+ζ6136 | ζ6143+ζ6110+ζ618 | ζ6139+ζ6119+ζ613 | ζ6154+ζ6137+ζ6131 | ζ6133+ζ6126+ζ612 | ζ6129+ζ6121+ζ6111 | ζ6125+ζ6120+ζ6116 | ζ6138+ζ6117+ζ616 | ζ6134+ζ6115+ζ6112 | ζ6130+ζ6124+ζ617 | ζ6152+ζ615+ζ614 | ζ6160+ζ6148+ζ6114 | ζ6158+ζ6142+ζ6122 | ζ6150+ζ6140+ζ6132 | ζ6159+ζ6135+ζ6128 | ζ6157+ζ6156+ζ619 | complex faithful |
ρ14 | 3 | 0 | 0 | ζ6133+ζ6126+ζ612 | ζ6155+ζ6144+ζ6123 | ζ6152+ζ615+ζ614 | ζ6125+ζ6120+ζ6116 | ζ6149+ζ6146+ζ6127 | ζ6138+ζ6117+ζ616 | ζ6160+ζ6148+ζ6114 | ζ6143+ζ6110+ζ618 | ζ6150+ζ6140+ζ6132 | ζ6154+ζ6137+ζ6131 | ζ6134+ζ6115+ζ6112 | ζ6159+ζ6135+ζ6128 | ζ6157+ζ6156+ζ619 | ζ6153+ζ6151+ζ6118 | ζ6139+ζ6119+ζ613 | ζ6145+ζ6141+ζ6136 | ζ6147+ζ6113+ζ61 | ζ6130+ζ6124+ζ617 | ζ6129+ζ6121+ζ6111 | ζ6158+ζ6142+ζ6122 | complex faithful |
ρ15 | 3 | 0 | 0 | ζ6138+ζ6117+ζ616 | ζ6143+ζ6110+ζ618 | ζ6134+ζ6115+ζ6112 | ζ6160+ζ6148+ζ6114 | ζ6125+ζ6120+ζ6116 | ζ6153+ζ6151+ζ6118 | ζ6158+ζ6142+ζ6122 | ζ6130+ζ6124+ζ617 | ζ6159+ζ6135+ζ6128 | ζ6150+ζ6140+ζ6132 | ζ6145+ζ6141+ζ6136 | ζ6155+ζ6144+ζ6123 | ζ6149+ζ6146+ζ6127 | ζ6154+ζ6137+ζ6131 | ζ6157+ζ6156+ζ619 | ζ6147+ζ6113+ζ61 | ζ6139+ζ6119+ζ613 | ζ6129+ζ6121+ζ6111 | ζ6133+ζ6126+ζ612 | ζ6152+ζ615+ζ614 | complex faithful |
ρ16 | 3 | 0 | 0 | ζ6154+ζ6137+ζ6131 | ζ6129+ζ6121+ζ6111 | ζ6147+ζ6113+ζ61 | ζ6152+ζ615+ζ614 | ζ6158+ζ6142+ζ6122 | ζ6150+ζ6140+ζ6132 | ζ6134+ζ6115+ζ6112 | ζ6133+ζ6126+ζ612 | ζ6143+ζ6110+ζ618 | ζ6155+ζ6144+ζ6123 | ζ6139+ζ6119+ζ613 | ζ6130+ζ6124+ζ617 | ζ6160+ζ6148+ζ6114 | ζ6159+ζ6135+ζ6128 | ζ6125+ζ6120+ζ6116 | ζ6157+ζ6156+ζ619 | ζ6149+ζ6146+ζ6127 | ζ6138+ζ6117+ζ616 | ζ6153+ζ6151+ζ6118 | ζ6145+ζ6141+ζ6136 | complex faithful |
ρ17 | 3 | 0 | 0 | ζ6159+ζ6135+ζ6128 | ζ6138+ζ6117+ζ616 | ζ6157+ζ6156+ζ619 | ζ6145+ζ6141+ζ6136 | ζ6134+ζ6115+ζ6112 | ζ6155+ζ6144+ζ6123 | ζ6147+ζ6113+ζ61 | ζ6153+ζ6151+ζ6118 | ζ6129+ζ6121+ζ6111 | ζ6130+ζ6124+ζ617 | ζ6149+ζ6146+ζ6127 | ζ6133+ζ6126+ζ612 | ζ6152+ζ615+ζ614 | ζ6143+ζ6110+ζ618 | ζ6158+ζ6142+ζ6122 | ζ6125+ζ6120+ζ6116 | ζ6160+ζ6148+ζ6114 | ζ6154+ζ6137+ζ6131 | ζ6150+ζ6140+ζ6132 | ζ6139+ζ6119+ζ613 | complex faithful |
ρ18 | 3 | 0 | 0 | ζ6125+ζ6120+ζ6116 | ζ6147+ζ6113+ζ61 | ζ6150+ζ6140+ζ6132 | ζ6138+ζ6117+ζ616 | ζ6133+ζ6126+ζ612 | ζ6160+ζ6148+ζ6114 | ζ6153+ζ6151+ζ6118 | ζ6139+ζ6119+ζ613 | ζ6134+ζ6115+ζ6112 | ζ6152+ζ615+ζ614 | ζ6159+ζ6135+ζ6128 | ζ6145+ζ6141+ζ6136 | ζ6129+ζ6121+ζ6111 | ζ6158+ζ6142+ζ6122 | ζ6130+ζ6124+ζ617 | ζ6155+ζ6144+ζ6123 | ζ6143+ζ6110+ζ618 | ζ6157+ζ6156+ζ619 | ζ6149+ζ6146+ζ6127 | ζ6154+ζ6137+ζ6131 | complex faithful |
ρ19 | 3 | 0 | 0 | ζ6158+ζ6142+ζ6122 | ζ6157+ζ6156+ζ619 | ζ6155+ζ6144+ζ6123 | ζ6154+ζ6137+ζ6131 | ζ6153+ζ6151+ζ6118 | ζ6152+ζ615+ζ614 | ζ6150+ζ6140+ζ6132 | ζ6149+ζ6146+ζ6127 | ζ6147+ζ6113+ζ61 | ζ6145+ζ6141+ζ6136 | ζ6143+ζ6110+ζ618 | ζ6139+ζ6119+ζ613 | ζ6138+ζ6117+ζ616 | ζ6134+ζ6115+ζ6112 | ζ6133+ζ6126+ζ612 | ζ6130+ζ6124+ζ617 | ζ6129+ζ6121+ζ6111 | ζ6125+ζ6120+ζ6116 | ζ6160+ζ6148+ζ6114 | ζ6159+ζ6135+ζ6128 | complex faithful |
ρ20 | 3 | 0 | 0 | ζ6150+ζ6140+ζ6132 | ζ6133+ζ6126+ζ612 | ζ6139+ζ6119+ζ613 | ζ6134+ζ6115+ζ6112 | ζ6152+ζ615+ζ614 | ζ6159+ζ6135+ζ6128 | ζ6145+ζ6141+ζ6136 | ζ6138+ζ6117+ζ616 | ζ6130+ζ6124+ζ617 | ζ6143+ζ6110+ζ618 | ζ6157+ζ6156+ζ619 | ζ6129+ζ6121+ζ6111 | ζ6158+ζ6142+ζ6122 | ζ6155+ζ6144+ζ6123 | ζ6160+ζ6148+ζ6114 | ζ6149+ζ6146+ζ6127 | ζ6125+ζ6120+ζ6116 | ζ6153+ζ6151+ζ6118 | ζ6154+ζ6137+ζ6131 | ζ6147+ζ6113+ζ61 | complex faithful |
ρ21 | 3 | 0 | 0 | ζ6134+ζ6115+ζ6112 | ζ6125+ζ6120+ζ6116 | ζ6130+ζ6124+ζ617 | ζ6159+ζ6135+ζ6128 | ζ6150+ζ6140+ζ6132 | ζ6145+ζ6141+ζ6136 | ζ6155+ζ6144+ζ6123 | ζ6160+ζ6148+ζ6114 | ζ6157+ζ6156+ζ619 | ζ6139+ζ6119+ζ613 | ζ6129+ζ6121+ζ6111 | ζ6149+ζ6146+ζ6127 | ζ6154+ζ6137+ζ6131 | ζ6147+ζ6113+ζ61 | ζ6153+ζ6151+ζ6118 | ζ6133+ζ6126+ζ612 | ζ6138+ζ6117+ζ616 | ζ6158+ζ6142+ζ6122 | ζ6152+ζ615+ζ614 | ζ6143+ζ6110+ζ618 | complex faithful |
ρ22 | 3 | 0 | 0 | ζ6145+ζ6141+ζ6136 | ζ6160+ζ6148+ζ6114 | ζ6129+ζ6121+ζ6111 | ζ6155+ζ6144+ζ6123 | ζ6159+ζ6135+ζ6128 | ζ6147+ζ6113+ζ61 | ζ6143+ζ6110+ζ618 | ζ6158+ζ6142+ζ6122 | ζ6149+ζ6146+ζ6127 | ζ6157+ζ6156+ζ619 | ζ6133+ζ6126+ζ612 | ζ6125+ζ6120+ζ6116 | ζ6150+ζ6140+ζ6132 | ζ6139+ζ6119+ζ613 | ζ6154+ζ6137+ζ6131 | ζ6138+ζ6117+ζ616 | ζ6153+ζ6151+ζ6118 | ζ6152+ζ615+ζ614 | ζ6134+ζ6115+ζ6112 | ζ6130+ζ6124+ζ617 | complex faithful |
ρ23 | 3 | 0 | 0 | ζ6160+ζ6148+ζ6114 | ζ6139+ζ6119+ζ613 | ζ6159+ζ6135+ζ6128 | ζ6153+ζ6151+ζ6118 | ζ6138+ζ6117+ζ616 | ζ6158+ζ6142+ζ6122 | ζ6154+ζ6137+ζ6131 | ζ6157+ζ6156+ζ619 | ζ6145+ζ6141+ζ6136 | ζ6134+ζ6115+ζ6112 | ζ6155+ζ6144+ζ6123 | ζ6147+ζ6113+ζ61 | ζ6133+ζ6126+ζ612 | ζ6152+ζ615+ζ614 | ζ6129+ζ6121+ζ6111 | ζ6143+ζ6110+ζ618 | ζ6130+ζ6124+ζ617 | ζ6149+ζ6146+ζ6127 | ζ6125+ζ6120+ζ6116 | ζ6150+ζ6140+ζ6132 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61)
(2 48 14)(3 34 27)(4 20 40)(5 6 53)(7 39 18)(8 25 31)(9 11 44)(10 58 57)(12 30 22)(13 16 35)(15 49 61)(17 21 26)(19 54 52)(23 59 43)(24 45 56)(28 50 47)(29 36 60)(32 55 38)(33 41 51)(37 46 42)
G:=sub<Sym(61)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61), (2,48,14)(3,34,27)(4,20,40)(5,6,53)(7,39,18)(8,25,31)(9,11,44)(10,58,57)(12,30,22)(13,16,35)(15,49,61)(17,21,26)(19,54,52)(23,59,43)(24,45,56)(28,50,47)(29,36,60)(32,55,38)(33,41,51)(37,46,42)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61), (2,48,14)(3,34,27)(4,20,40)(5,6,53)(7,39,18)(8,25,31)(9,11,44)(10,58,57)(12,30,22)(13,16,35)(15,49,61)(17,21,26)(19,54,52)(23,59,43)(24,45,56)(28,50,47)(29,36,60)(32,55,38)(33,41,51)(37,46,42) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61)], [(2,48,14),(3,34,27),(4,20,40),(5,6,53),(7,39,18),(8,25,31),(9,11,44),(10,58,57),(12,30,22),(13,16,35),(15,49,61),(17,21,26),(19,54,52),(23,59,43),(24,45,56),(28,50,47),(29,36,60),(32,55,38),(33,41,51),(37,46,42)]])
C61⋊C3 is a maximal subgroup of
C61⋊C6
Matrix representation of C61⋊C3 ►in GL3(𝔽13) generated by
11 | 9 | 0 |
9 | 9 | 1 |
4 | 2 | 0 |
1 | 0 | 4 |
0 | 0 | 12 |
0 | 1 | 12 |
G:=sub<GL(3,GF(13))| [11,9,4,9,9,2,0,1,0],[1,0,0,0,0,1,4,12,12] >;
C61⋊C3 in GAP, Magma, Sage, TeX
C_{61}\rtimes C_3
% in TeX
G:=Group("C61:C3");
// GroupNames label
G:=SmallGroup(183,1);
// by ID
G=gap.SmallGroup(183,1);
# by ID
G:=PCGroup([2,-3,-61,565]);
// Polycyclic
G:=Group<a,b|a^61=b^3=1,b*a*b^-1=a^13>;
// generators/relations
Export
Subgroup lattice of C61⋊C3 in TeX
Character table of C61⋊C3 in TeX