Copied to
clipboard

G = S3×C2×C14order 168 = 23·3·7

Direct product of C2×C14 and S3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C2×C14, C214C23, C424C22, C6⋊(C2×C14), C3⋊(C22×C14), (C2×C6)⋊3C14, (C2×C42)⋊7C2, SmallGroup(168,55)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C2×C14
C1C3C21S3×C7S3×C14 — S3×C2×C14
C3 — S3×C2×C14
C1C2×C14

Generators and relations for S3×C2×C14
 G = < a,b,c,d | a2=b14=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 108 in 64 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C7, C23, D6, C2×C6, C14, C14, C21, C22×S3, C2×C14, C2×C14, S3×C7, C42, C22×C14, S3×C14, C2×C42, S3×C2×C14
Quotients: C1, C2, C22, S3, C7, C23, D6, C14, C22×S3, C2×C14, S3×C7, C22×C14, S3×C14, S3×C2×C14

Smallest permutation representation of S3×C2×C14
On 84 points
Generators in S84
(1 25)(2 26)(3 27)(4 28)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(29 59)(30 60)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)(41 57)(42 58)(43 80)(44 81)(45 82)(46 83)(47 84)(48 71)(49 72)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 50 61)(2 51 62)(3 52 63)(4 53 64)(5 54 65)(6 55 66)(7 56 67)(8 43 68)(9 44 69)(10 45 70)(11 46 57)(12 47 58)(13 48 59)(14 49 60)(15 77 35)(16 78 36)(17 79 37)(18 80 38)(19 81 39)(20 82 40)(21 83 41)(22 84 42)(23 71 29)(24 72 30)(25 73 31)(26 74 32)(27 75 33)(28 76 34)
(1 25)(2 26)(3 27)(4 28)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(29 48)(30 49)(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 43)(39 44)(40 45)(41 46)(42 47)(57 83)(58 84)(59 71)(60 72)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(67 79)(68 80)(69 81)(70 82)

G:=sub<Sym(84)| (1,25)(2,26)(3,27)(4,28)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,57)(42,58)(43,80)(44,81)(45,82)(46,83)(47,84)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,61)(2,51,62)(3,52,63)(4,53,64)(5,54,65)(6,55,66)(7,56,67)(8,43,68)(9,44,69)(10,45,70)(11,46,57)(12,47,58)(13,48,59)(14,49,60)(15,77,35)(16,78,36)(17,79,37)(18,80,38)(19,81,39)(20,82,40)(21,83,41)(22,84,42)(23,71,29)(24,72,30)(25,73,31)(26,74,32)(27,75,33)(28,76,34), (1,25)(2,26)(3,27)(4,28)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,43)(39,44)(40,45)(41,46)(42,47)(57,83)(58,84)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,81)(70,82)>;

G:=Group( (1,25)(2,26)(3,27)(4,28)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(29,59)(30,60)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)(41,57)(42,58)(43,80)(44,81)(45,82)(46,83)(47,84)(48,71)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,61)(2,51,62)(3,52,63)(4,53,64)(5,54,65)(6,55,66)(7,56,67)(8,43,68)(9,44,69)(10,45,70)(11,46,57)(12,47,58)(13,48,59)(14,49,60)(15,77,35)(16,78,36)(17,79,37)(18,80,38)(19,81,39)(20,82,40)(21,83,41)(22,84,42)(23,71,29)(24,72,30)(25,73,31)(26,74,32)(27,75,33)(28,76,34), (1,25)(2,26)(3,27)(4,28)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,43)(39,44)(40,45)(41,46)(42,47)(57,83)(58,84)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(67,79)(68,80)(69,81)(70,82) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,28),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(29,59),(30,60),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70),(41,57),(42,58),(43,80),(44,81),(45,82),(46,83),(47,84),(48,71),(49,72),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,50,61),(2,51,62),(3,52,63),(4,53,64),(5,54,65),(6,55,66),(7,56,67),(8,43,68),(9,44,69),(10,45,70),(11,46,57),(12,47,58),(13,48,59),(14,49,60),(15,77,35),(16,78,36),(17,79,37),(18,80,38),(19,81,39),(20,82,40),(21,83,41),(22,84,42),(23,71,29),(24,72,30),(25,73,31),(26,74,32),(27,75,33),(28,76,34)], [(1,25),(2,26),(3,27),(4,28),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(29,48),(30,49),(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,43),(39,44),(40,45),(41,46),(42,47),(57,83),(58,84),(59,71),(60,72),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(67,79),(68,80),(69,81),(70,82)]])

S3×C2×C14 is a maximal subgroup of   D6⋊Dic7

84 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 6A6B6C7A···7F14A···14R14S···14AP21A···21F42A···42R
order1222222236667···714···1414···1421···2142···42
size1111333322221···11···13···32···22···2

84 irreducible representations

dim1111112222
type+++++
imageC1C2C2C7C14C14S3D6S3×C7S3×C14
kernelS3×C2×C14S3×C14C2×C42C22×S3D6C2×C6C2×C14C14C22C2
# reps161636613618

Matrix representation of S3×C2×C14 in GL4(𝔽43) generated by

42000
04200
0010
0001
,
1000
04200
00160
00016
,
1000
0100
004242
0010
,
1000
0100
0010
004242
G:=sub<GL(4,GF(43))| [42,0,0,0,0,42,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,42,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,42,1,0,0,42,0],[1,0,0,0,0,1,0,0,0,0,1,42,0,0,0,42] >;

S3×C2×C14 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{14}
% in TeX

G:=Group("S3xC2xC14");
// GroupNames label

G:=SmallGroup(168,55);
// by ID

G=gap.SmallGroup(168,55);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,-3,2804]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^14=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽