Extensions 1→N→G→Q→1 with N=C15 and Q=Dic3

Direct product G=N×Q with N=C15 and Q=Dic3
dρLabelID
Dic3×C15602Dic3xC15180,14

Semidirect products G=N:Q with N=C15 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C151Dic3 = C323F5φ: Dic3/C3C4 ⊆ Aut C1545C15:1Dic3180,22
C152Dic3 = C3×C3⋊F5φ: Dic3/C3C4 ⊆ Aut C15304C15:2Dic3180,21
C153Dic3 = C3⋊Dic15φ: Dic3/C6C2 ⊆ Aut C15180C15:3Dic3180,17
C154Dic3 = C3×Dic15φ: Dic3/C6C2 ⊆ Aut C15602C15:4Dic3180,15
C155Dic3 = C5×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C15180C15:5Dic3180,16

Non-split extensions G=N.Q with N=C15 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C15.Dic3 = C9⋊F5φ: Dic3/C3C4 ⊆ Aut C15454C15.Dic3180,6
C15.2Dic3 = Dic45φ: Dic3/C6C2 ⊆ Aut C151802-C15.2Dic3180,3
C15.3Dic3 = C5×Dic9φ: Dic3/C6C2 ⊆ Aut C151802C15.3Dic3180,1

׿
×
𝔽