Copied to
clipboard

G = C9⋊F5order 180 = 22·32·5

The semidirect product of C9 and F5 acting via F5/D5=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C9⋊F5, C5⋊Dic9, C451C4, D5.D9, C15.Dic3, C3.(C3⋊F5), (C9×D5).1C2, (C3×D5).2S3, SmallGroup(180,6)

Series: Derived Chief Lower central Upper central

C1C45 — C9⋊F5
C1C3C15C45C9×D5 — C9⋊F5
C45 — C9⋊F5
C1

Generators and relations for C9⋊F5
 G = < a,b,c | a9=b5=c4=1, ab=ba, cac-1=a-1, cbc-1=b3 >

5C2
45C4
5C6
15Dic3
5C18
9F5
5Dic9
3C3⋊F5

Character table of C9⋊F5

 class 1234A4B569A9B9C15A15B18A18B18C45A45B45C45D45E45F
 size 152454541022244101010444444
ρ1111111111111111111111    trivial
ρ2111-1-11111111111111111    linear of order 2
ρ31-11-ii1-111111-1-1-1111111    linear of order 4
ρ41-11i-i1-111111-1-1-1111111    linear of order 4
ρ52220022-1-1-122-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ622-1002-1ζ9594ζ989ζ9792-1-1ζ9594ζ989ζ9792ζ9792ζ9594ζ989ζ9792ζ9594ζ989    orthogonal lifted from D9
ρ722-1002-1ζ9792ζ9594ζ989-1-1ζ9792ζ9594ζ989ζ989ζ9792ζ9594ζ989ζ9792ζ9594    orthogonal lifted from D9
ρ822-1002-1ζ989ζ9792ζ9594-1-1ζ989ζ9792ζ9594ζ9594ζ989ζ9792ζ9594ζ989ζ9792    orthogonal lifted from D9
ρ92-2-10021ζ9594ζ989ζ9792-1-195949899792ζ9792ζ9594ζ989ζ9792ζ9594ζ989    symplectic lifted from Dic9, Schur index 2
ρ102-2-10021ζ989ζ9792ζ9594-1-198997929594ζ9594ζ989ζ9792ζ9594ζ989ζ9792    symplectic lifted from Dic9, Schur index 2
ρ112-22002-2-1-1-122111-1-1-1-1-1-1    symplectic lifted from Dic3, Schur index 2
ρ122-2-10021ζ9792ζ9594ζ989-1-197929594989ζ989ζ9792ζ9594ζ989ζ9792ζ9594    symplectic lifted from Dic9, Schur index 2
ρ1340400-10444-1-1000-1-1-1-1-1-1    orthogonal lifted from F5
ρ1440400-10-2-2-2-1-10001--15/21--15/21+-15/21+-15/21+-15/21--15/2    complex lifted from C3⋊F5
ρ1540400-10-2-2-2-1-10001+-15/21+-15/21--15/21--15/21--15/21+-15/2    complex lifted from C3⋊F5
ρ1640-200-1095+2ζ9498+2ζ997+2ζ921+-15/21--15/200097ζ5497ζ59792ζ5492ζ595ζ5395ζ529594ζ5394ζ5298ζ5498ζ5989ζ549ζ597ζ5397ζ529792ζ5392ζ52ζ95ζ5395ζ5294ζ5394ζ5294ζ98ζ5498ζ59ζ549ζ59    complex faithful
ρ1740-200-1095+2ζ9498+2ζ997+2ζ921--15/21+-15/200097ζ5397ζ529792ζ5392ζ52ζ95ζ5395ζ5294ζ5394ζ5294ζ98ζ5498ζ59ζ549ζ5997ζ5497ζ59792ζ5492ζ595ζ5395ζ529594ζ5394ζ5298ζ5498ζ5989ζ549ζ5    complex faithful
ρ1840-200-1097+2ζ9295+2ζ9498+2ζ91+-15/21--15/2000ζ98ζ5498ζ59ζ549ζ5997ζ5497ζ59792ζ5492ζ5ζ95ζ5395ζ5294ζ5394ζ529498ζ5498ζ5989ζ549ζ597ζ5397ζ529792ζ5392ζ5295ζ5395ζ529594ζ5394ζ52    complex faithful
ρ1940-200-1098+2ζ997+2ζ9295+2ζ941+-15/21--15/200095ζ5395ζ529594ζ5394ζ52ζ98ζ5498ζ59ζ549ζ5997ζ5397ζ529792ζ5392ζ52ζ95ζ5395ζ5294ζ5394ζ529498ζ5498ζ5989ζ549ζ597ζ5497ζ59792ζ5492ζ5    complex faithful
ρ2040-200-1097+2ζ9295+2ζ9498+2ζ91--15/21+-15/200098ζ5498ζ5989ζ549ζ597ζ5397ζ529792ζ5392ζ5295ζ5395ζ529594ζ5394ζ52ζ98ζ5498ζ59ζ549ζ5997ζ5497ζ59792ζ5492ζ5ζ95ζ5395ζ5294ζ5394ζ5294    complex faithful
ρ2140-200-1098+2ζ997+2ζ9295+2ζ941--15/21+-15/2000ζ95ζ5395ζ5294ζ5394ζ529498ζ5498ζ5989ζ549ζ597ζ5497ζ59792ζ5492ζ595ζ5395ζ529594ζ5394ζ52ζ98ζ5498ζ59ζ549ζ5997ζ5397ζ529792ζ5392ζ52    complex faithful

Smallest permutation representation of C9⋊F5
On 45 points
Generators in S45
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)
(1 10 24 43 33)(2 11 25 44 34)(3 12 26 45 35)(4 13 27 37 36)(5 14 19 38 28)(6 15 20 39 29)(7 16 21 40 30)(8 17 22 41 31)(9 18 23 42 32)
(2 9)(3 8)(4 7)(5 6)(10 24 33 43)(11 23 34 42)(12 22 35 41)(13 21 36 40)(14 20 28 39)(15 19 29 38)(16 27 30 37)(17 26 31 45)(18 25 32 44)

G:=sub<Sym(45)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,10,24,43,33)(2,11,25,44,34)(3,12,26,45,35)(4,13,27,37,36)(5,14,19,38,28)(6,15,20,39,29)(7,16,21,40,30)(8,17,22,41,31)(9,18,23,42,32), (2,9)(3,8)(4,7)(5,6)(10,24,33,43)(11,23,34,42)(12,22,35,41)(13,21,36,40)(14,20,28,39)(15,19,29,38)(16,27,30,37)(17,26,31,45)(18,25,32,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45), (1,10,24,43,33)(2,11,25,44,34)(3,12,26,45,35)(4,13,27,37,36)(5,14,19,38,28)(6,15,20,39,29)(7,16,21,40,30)(8,17,22,41,31)(9,18,23,42,32), (2,9)(3,8)(4,7)(5,6)(10,24,33,43)(11,23,34,42)(12,22,35,41)(13,21,36,40)(14,20,28,39)(15,19,29,38)(16,27,30,37)(17,26,31,45)(18,25,32,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45)], [(1,10,24,43,33),(2,11,25,44,34),(3,12,26,45,35),(4,13,27,37,36),(5,14,19,38,28),(6,15,20,39,29),(7,16,21,40,30),(8,17,22,41,31),(9,18,23,42,32)], [(2,9),(3,8),(4,7),(5,6),(10,24,33,43),(11,23,34,42),(12,22,35,41),(13,21,36,40),(14,20,28,39),(15,19,29,38),(16,27,30,37),(17,26,31,45),(18,25,32,44)]])

C9⋊F5 is a maximal subgroup of   D9×F5
C9⋊F5 is a maximal quotient of   C45⋊C8

Matrix representation of C9⋊F5 in GL4(𝔽181) generated by

45400
12713100
00454
00127131
,
741491800
321060180
1000
0100
,
1000
18018000
1073210732
1067410674
G:=sub<GL(4,GF(181))| [4,127,0,0,54,131,0,0,0,0,4,127,0,0,54,131],[74,32,1,0,149,106,0,1,180,0,0,0,0,180,0,0],[1,180,107,106,0,180,32,74,0,0,107,106,0,0,32,74] >;

C9⋊F5 in GAP, Magma, Sage, TeX

C_9\rtimes F_5
% in TeX

G:=Group("C9:F5");
// GroupNames label

G:=SmallGroup(180,6);
// by ID

G=gap.SmallGroup(180,6);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-3,10,1022,462,723,488,3004]);
// Polycyclic

G:=Group<a,b,c|a^9=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C9⋊F5 in TeX
Character table of C9⋊F5 in TeX

׿
×
𝔽