Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C22

Direct product G=N×Q with N=C4 and Q=C2×C22
dρLabelID
C22×C44176C2^2xC44176,37

Semidirect products G=N:Q with N=C4 and Q=C2×C22
extensionφ:Q→Aut NdρLabelID
C4⋊(C2×C22) = D4×C22φ: C2×C22/C22C2 ⊆ Aut C488C4:(C2xC22)176,38

Non-split extensions G=N.Q with N=C4 and Q=C2×C22
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C22) = C11×D8φ: C2×C22/C22C2 ⊆ Aut C4882C4.1(C2xC22)176,24
C4.2(C2×C22) = C11×SD16φ: C2×C22/C22C2 ⊆ Aut C4882C4.2(C2xC22)176,25
C4.3(C2×C22) = C11×Q16φ: C2×C22/C22C2 ⊆ Aut C41762C4.3(C2xC22)176,26
C4.4(C2×C22) = Q8×C22φ: C2×C22/C22C2 ⊆ Aut C4176C4.4(C2xC22)176,39
C4.5(C2×C22) = C11×C4○D4φ: C2×C22/C22C2 ⊆ Aut C4882C4.5(C2xC22)176,40
C4.6(C2×C22) = C11×M4(2)central extension (φ=1)882C4.6(C2xC22)176,23

׿
×
𝔽