Copied to
clipboard

G = C11×SD16order 176 = 24·11

Direct product of C11 and SD16

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: C11×SD16, Q8⋊C22, C82C22, C886C2, D4.C22, C22.15D4, C44.18C22, C4.2(C2×C22), (Q8×C11)⋊4C2, C2.4(D4×C11), (D4×C11).2C2, SmallGroup(176,25)

Series: Derived Chief Lower central Upper central

C1C4 — C11×SD16
C1C2C4C44Q8×C11 — C11×SD16
C1C2C4 — C11×SD16
C1C22C44 — C11×SD16

Generators and relations for C11×SD16
 G = < a,b,c | a11=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

4C2
2C4
2C22
4C22
2C44
2C2×C22

Smallest permutation representation of C11×SD16
On 88 points
Generators in S88
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)(56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77)(78 79 80 81 82 83 84 85 86 87 88)
(1 79 59 23 67 40 47 14)(2 80 60 24 68 41 48 15)(3 81 61 25 69 42 49 16)(4 82 62 26 70 43 50 17)(5 83 63 27 71 44 51 18)(6 84 64 28 72 34 52 19)(7 85 65 29 73 35 53 20)(8 86 66 30 74 36 54 21)(9 87 56 31 75 37 55 22)(10 88 57 32 76 38 45 12)(11 78 58 33 77 39 46 13)
(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 34)(20 35)(21 36)(22 37)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 78)(45 57)(46 58)(47 59)(48 60)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 56)

G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,79,59,23,67,40,47,14)(2,80,60,24,68,41,48,15)(3,81,61,25,69,42,49,16)(4,82,62,26,70,43,50,17)(5,83,63,27,71,44,51,18)(6,84,64,28,72,34,52,19)(7,85,65,29,73,35,53,20)(8,86,66,30,74,36,54,21)(9,87,56,31,75,37,55,22)(10,88,57,32,76,38,45,12)(11,78,58,33,77,39,46,13), (12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,34)(20,35)(21,36)(22,37)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,78)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55)(56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77)(78,79,80,81,82,83,84,85,86,87,88), (1,79,59,23,67,40,47,14)(2,80,60,24,68,41,48,15)(3,81,61,25,69,42,49,16)(4,82,62,26,70,43,50,17)(5,83,63,27,71,44,51,18)(6,84,64,28,72,34,52,19)(7,85,65,29,73,35,53,20)(8,86,66,30,74,36,54,21)(9,87,56,31,75,37,55,22)(10,88,57,32,76,38,45,12)(11,78,58,33,77,39,46,13), (12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,34)(20,35)(21,36)(22,37)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,78)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55),(56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77),(78,79,80,81,82,83,84,85,86,87,88)], [(1,79,59,23,67,40,47,14),(2,80,60,24,68,41,48,15),(3,81,61,25,69,42,49,16),(4,82,62,26,70,43,50,17),(5,83,63,27,71,44,51,18),(6,84,64,28,72,34,52,19),(7,85,65,29,73,35,53,20),(8,86,66,30,74,36,54,21),(9,87,56,31,75,37,55,22),(10,88,57,32,76,38,45,12),(11,78,58,33,77,39,46,13)], [(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,34),(20,35),(21,36),(22,37),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,78),(45,57),(46,58),(47,59),(48,60),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,56)]])

C11×SD16 is a maximal subgroup of   D88⋊C2  D4.D22  Q8.D22

77 conjugacy classes

class 1 2A2B4A4B8A8B11A···11J22A···22J22K···22T44A···44J44K···44T88A···88T
order122448811···1122···2222···2244···4444···4488···88
size11424221···11···14···42···24···42···2

77 irreducible representations

dim111111112222
type+++++
imageC1C2C2C2C11C22C22C22D4SD16D4×C11C11×SD16
kernelC11×SD16C88D4×C11Q8×C11SD16C8D4Q8C22C11C2C1
# reps111110101010121020

Matrix representation of C11×SD16 in GL2(𝔽89) generated by

780
078
,
4969
400
,
11
088
G:=sub<GL(2,GF(89))| [78,0,0,78],[49,40,69,0],[1,0,1,88] >;

C11×SD16 in GAP, Magma, Sage, TeX

C_{11}\times {\rm SD}_{16}
% in TeX

G:=Group("C11xSD16");
// GroupNames label

G:=SmallGroup(176,25);
// by ID

G=gap.SmallGroup(176,25);
# by ID

G:=PCGroup([5,-2,-2,-11,-2,-2,440,461,2643,1328,58]);
// Polycyclic

G:=Group<a,b,c|a^11=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

Export

Subgroup lattice of C11×SD16 in TeX

׿
×
𝔽