Extensions 1→N→G→Q→1 with N=C22 and Q=D4

Direct product G=N×Q with N=C22 and Q=D4
dρLabelID
D4×C2288D4xC22176,38

Semidirect products G=N:Q with N=C22 and Q=D4
extensionφ:Q→Aut NdρLabelID
C221D4 = C2×D44φ: D4/C4C2 ⊆ Aut C2288C22:1D4176,29
C222D4 = C2×C11⋊D4φ: D4/C22C2 ⊆ Aut C2288C22:2D4176,36

Non-split extensions G=N.Q with N=C22 and Q=D4
extensionφ:Q→Aut NdρLabelID
C22.1D4 = C8⋊D11φ: D4/C4C2 ⊆ Aut C22882C22.1D4176,5
C22.2D4 = D88φ: D4/C4C2 ⊆ Aut C22882+C22.2D4176,6
C22.3D4 = Dic44φ: D4/C4C2 ⊆ Aut C221762-C22.3D4176,7
C22.4D4 = C44⋊C4φ: D4/C4C2 ⊆ Aut C22176C22.4D4176,12
C22.5D4 = Dic11⋊C4φ: D4/C22C2 ⊆ Aut C22176C22.5D4176,11
C22.6D4 = D22⋊C4φ: D4/C22C2 ⊆ Aut C2288C22.6D4176,13
C22.7D4 = D4⋊D11φ: D4/C22C2 ⊆ Aut C22884+C22.7D4176,14
C22.8D4 = D4.D11φ: D4/C22C2 ⊆ Aut C22884-C22.8D4176,15
C22.9D4 = Q8⋊D11φ: D4/C22C2 ⊆ Aut C22884+C22.9D4176,16
C22.10D4 = C11⋊Q16φ: D4/C22C2 ⊆ Aut C221764-C22.10D4176,17
C22.11D4 = C23.D11φ: D4/C22C2 ⊆ Aut C2288C22.11D4176,18
C22.12D4 = C11×C22⋊C4central extension (φ=1)88C22.12D4176,20
C22.13D4 = C11×C4⋊C4central extension (φ=1)176C22.13D4176,21
C22.14D4 = C11×D8central extension (φ=1)882C22.14D4176,24
C22.15D4 = C11×SD16central extension (φ=1)882C22.15D4176,25
C22.16D4 = C11×Q16central extension (φ=1)1762C22.16D4176,26

׿
×
𝔽