extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1M4(2) = (C22×S3)⋊C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).1M4(2) | 192,27 |
(C2×C6).2M4(2) = (C2×Dic3)⋊C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).2M4(2) | 192,28 |
(C2×C6).3M4(2) = C24.97D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).3M4(2) | 192,70 |
(C2×C6).4M4(2) = C48⋊C4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).4M4(2) | 192,71 |
(C2×C6).5M4(2) = Dic6.C8 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).5M4(2) | 192,74 |
(C2×C6).6M4(2) = C24.99D4 | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 96 | 4 | (C2xC6).6M4(2) | 192,120 |
(C2×C6).7M4(2) = Dic3.M4(2) | φ: M4(2)/C4 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).7M4(2) | 192,278 |
(C2×C6).8M4(2) = C3×D4.C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C6 | 96 | 2 | (C2xC6).8M4(2) | 192,156 |
(C2×C6).9M4(2) = D12.C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C6 | 96 | 2 | (C2xC6).9M4(2) | 192,67 |
(C2×C6).10M4(2) = (C2×C24)⋊5C4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).10M4(2) | 192,109 |
(C2×C6).11M4(2) = C2×Dic3⋊C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).11M4(2) | 192,658 |
(C2×C6).12M4(2) = C2×C24⋊C4 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).12M4(2) | 192,659 |
(C2×C6).13M4(2) = C2×D6⋊C8 | φ: M4(2)/C8 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).13M4(2) | 192,667 |
(C2×C6).14M4(2) = C3×C23⋊C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).14M4(2) | 192,129 |
(C2×C6).15M4(2) = C3×C22.M4(2) | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).15M4(2) | 192,130 |
(C2×C6).16M4(2) = C3×C16⋊C4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).16M4(2) | 192,153 |
(C2×C6).17M4(2) = C3×C8.C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).17M4(2) | 192,170 |
(C2×C6).18M4(2) = C3×C42.6C4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).18M4(2) | 192,865 |
(C2×C6).19M4(2) = C24.1C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | 2 | (C2xC6).19M4(2) | 192,22 |
(C2×C6).20M4(2) = C12.15C42 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).20M4(2) | 192,25 |
(C2×C6).21M4(2) = (C2×C12)⋊3C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).21M4(2) | 192,83 |
(C2×C6).22M4(2) = C24.3Dic3 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).22M4(2) | 192,84 |
(C2×C6).23M4(2) = (C2×C12)⋊C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).23M4(2) | 192,87 |
(C2×C6).24M4(2) = C2×C42.S3 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).24M4(2) | 192,480 |
(C2×C6).25M4(2) = C2×C12⋊C8 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).25M4(2) | 192,482 |
(C2×C6).26M4(2) = C42.270D6 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).26M4(2) | 192,485 |
(C2×C6).27M4(2) = C2×C12.55D4 | φ: M4(2)/C2×C4 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).27M4(2) | 192,765 |
(C2×C6).28M4(2) = C3×C22.7C42 | central extension (φ=1) | 192 | | (C2xC6).28M4(2) | 192,142 |
(C2×C6).29M4(2) = C6×C8⋊C4 | central extension (φ=1) | 192 | | (C2xC6).29M4(2) | 192,836 |
(C2×C6).30M4(2) = C6×C22⋊C8 | central extension (φ=1) | 96 | | (C2xC6).30M4(2) | 192,839 |
(C2×C6).31M4(2) = C6×C4⋊C8 | central extension (φ=1) | 192 | | (C2xC6).31M4(2) | 192,855 |