Copied to
clipboard

G = C3xD4.C8order 192 = 26·3

Direct product of C3 and D4.C8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xD4.C8, D4.C24, Q8.2C24, C24.107D4, M5(2):4C6, M4(2).3C12, (C2xC48):6C2, (C2xC16):2C6, C4.3(C2xC24), C8oD4.4C6, (C3xD4).3C8, C8.27(C3xD4), (C3xQ8).3C8, C12.32(C2xC8), C4oD4.4C12, (C2xC6).8M4(2), C6.27(C22:C8), (C3xM5(2)):12C2, (C3xM4(2)).7C4, (C2xC24).442C22, C12.113(C22:C4), C22.1(C3xM4(2)), (C2xC8).96(C2xC6), (C3xC4oD4).5C4, (C3xC8oD4).5C2, C2.8(C3xC22:C8), (C2xC4).42(C2xC12), C4.30(C3xC22:C4), (C2xC12).263(C2xC4), SmallGroup(192,156)

Series: Derived Chief Lower central Upper central

C1C4 — C3xD4.C8
C1C2C4C8C2xC8C2xC24C2xC48 — C3xD4.C8
C1C2C4 — C3xD4.C8
C1C24C2xC24 — C3xD4.C8

Generators and relations for C3xD4.C8
 G = < a,b,c,d | a3=b4=c2=1, d8=b2, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=bc >

Subgroups: 82 in 56 conjugacy classes, 34 normal (all characteristic)
Quotients: C1, C2, C3, C4, C22, C6, C8, C2xC4, D4, C12, C2xC6, C22:C4, C2xC8, M4(2), C24, C2xC12, C3xD4, C22:C8, C3xC22:C4, C2xC24, C3xM4(2), D4.C8, C3xC22:C8, C3xD4.C8
2C2
4C2
2C4
2C22
2C6
4C6
2C2xC4
2D4
2C8
2C2xC6
2C12
2C2xC8
2C16
2M4(2)
2C16
2C3xD4
2C2xC12
2C24
2C3xM4(2)
2C48
2C48
2C2xC24

Smallest permutation representation of C3xD4.C8
On 96 points
Generators in S96
(1 53 82)(2 54 83)(3 55 84)(4 56 85)(5 57 86)(6 58 87)(7 59 88)(8 60 89)(9 61 90)(10 62 91)(11 63 92)(12 64 93)(13 49 94)(14 50 95)(15 51 96)(16 52 81)(17 72 47)(18 73 48)(19 74 33)(20 75 34)(21 76 35)(22 77 36)(23 78 37)(24 79 38)(25 80 39)(26 65 40)(27 66 41)(28 67 42)(29 68 43)(30 69 44)(31 70 45)(32 71 46)
(1 69 9 77)(2 70 10 78)(3 71 11 79)(4 72 12 80)(5 73 13 65)(6 74 14 66)(7 75 15 67)(8 76 16 68)(17 93 25 85)(18 94 26 86)(19 95 27 87)(20 96 28 88)(21 81 29 89)(22 82 30 90)(23 83 31 91)(24 84 32 92)(33 50 41 58)(34 51 42 59)(35 52 43 60)(36 53 44 61)(37 54 45 62)(38 55 46 63)(39 56 47 64)(40 57 48 49)
(1 77)(2 10)(3 71)(5 65)(6 14)(7 75)(9 69)(11 79)(13 73)(15 67)(17 25)(18 94)(20 88)(21 29)(22 82)(24 92)(26 86)(28 96)(30 90)(32 84)(34 59)(35 43)(36 53)(38 63)(39 47)(40 57)(42 51)(44 61)(46 55)(48 49)(50 58)(54 62)(68 76)(72 80)(83 91)(87 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,53,82)(2,54,83)(3,55,84)(4,56,85)(5,57,86)(6,58,87)(7,59,88)(8,60,89)(9,61,90)(10,62,91)(11,63,92)(12,64,93)(13,49,94)(14,50,95)(15,51,96)(16,52,81)(17,72,47)(18,73,48)(19,74,33)(20,75,34)(21,76,35)(22,77,36)(23,78,37)(24,79,38)(25,80,39)(26,65,40)(27,66,41)(28,67,42)(29,68,43)(30,69,44)(31,70,45)(32,71,46), (1,69,9,77)(2,70,10,78)(3,71,11,79)(4,72,12,80)(5,73,13,65)(6,74,14,66)(7,75,15,67)(8,76,16,68)(17,93,25,85)(18,94,26,86)(19,95,27,87)(20,96,28,88)(21,81,29,89)(22,82,30,90)(23,83,31,91)(24,84,32,92)(33,50,41,58)(34,51,42,59)(35,52,43,60)(36,53,44,61)(37,54,45,62)(38,55,46,63)(39,56,47,64)(40,57,48,49), (1,77)(2,10)(3,71)(5,65)(6,14)(7,75)(9,69)(11,79)(13,73)(15,67)(17,25)(18,94)(20,88)(21,29)(22,82)(24,92)(26,86)(28,96)(30,90)(32,84)(34,59)(35,43)(36,53)(38,63)(39,47)(40,57)(42,51)(44,61)(46,55)(48,49)(50,58)(54,62)(68,76)(72,80)(83,91)(87,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,53,82)(2,54,83)(3,55,84)(4,56,85)(5,57,86)(6,58,87)(7,59,88)(8,60,89)(9,61,90)(10,62,91)(11,63,92)(12,64,93)(13,49,94)(14,50,95)(15,51,96)(16,52,81)(17,72,47)(18,73,48)(19,74,33)(20,75,34)(21,76,35)(22,77,36)(23,78,37)(24,79,38)(25,80,39)(26,65,40)(27,66,41)(28,67,42)(29,68,43)(30,69,44)(31,70,45)(32,71,46), (1,69,9,77)(2,70,10,78)(3,71,11,79)(4,72,12,80)(5,73,13,65)(6,74,14,66)(7,75,15,67)(8,76,16,68)(17,93,25,85)(18,94,26,86)(19,95,27,87)(20,96,28,88)(21,81,29,89)(22,82,30,90)(23,83,31,91)(24,84,32,92)(33,50,41,58)(34,51,42,59)(35,52,43,60)(36,53,44,61)(37,54,45,62)(38,55,46,63)(39,56,47,64)(40,57,48,49), (1,77)(2,10)(3,71)(5,65)(6,14)(7,75)(9,69)(11,79)(13,73)(15,67)(17,25)(18,94)(20,88)(21,29)(22,82)(24,92)(26,86)(28,96)(30,90)(32,84)(34,59)(35,43)(36,53)(38,63)(39,47)(40,57)(42,51)(44,61)(46,55)(48,49)(50,58)(54,62)(68,76)(72,80)(83,91)(87,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,53,82),(2,54,83),(3,55,84),(4,56,85),(5,57,86),(6,58,87),(7,59,88),(8,60,89),(9,61,90),(10,62,91),(11,63,92),(12,64,93),(13,49,94),(14,50,95),(15,51,96),(16,52,81),(17,72,47),(18,73,48),(19,74,33),(20,75,34),(21,76,35),(22,77,36),(23,78,37),(24,79,38),(25,80,39),(26,65,40),(27,66,41),(28,67,42),(29,68,43),(30,69,44),(31,70,45),(32,71,46)], [(1,69,9,77),(2,70,10,78),(3,71,11,79),(4,72,12,80),(5,73,13,65),(6,74,14,66),(7,75,15,67),(8,76,16,68),(17,93,25,85),(18,94,26,86),(19,95,27,87),(20,96,28,88),(21,81,29,89),(22,82,30,90),(23,83,31,91),(24,84,32,92),(33,50,41,58),(34,51,42,59),(35,52,43,60),(36,53,44,61),(37,54,45,62),(38,55,46,63),(39,56,47,64),(40,57,48,49)], [(1,77),(2,10),(3,71),(5,65),(6,14),(7,75),(9,69),(11,79),(13,73),(15,67),(17,25),(18,94),(20,88),(21,29),(22,82),(24,92),(26,86),(28,96),(30,90),(32,84),(34,59),(35,43),(36,53),(38,63),(39,47),(40,57),(42,51),(44,61),(46,55),(48,49),(50,58),(54,62),(68,76),(72,80),(83,91),(87,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

84 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A6B6C6D6E6F8A8B8C8D8E8F8G8H12A12B12C12D12E12F12G12H16A···16H16I16J16K16L24A···24H24I24J24K24L24M24N24O24P48A···48P48Q···48X
order122233444466666688888888121212121212121216···161616161624···24242424242424242448···4848···48
size112411112411224411112244111122442···244441···1222244442···24···4

84 irreducible representations

dim1111111111111111222222
type+++++
imageC1C2C2C2C3C4C4C6C6C6C8C8C12C12C24C24D4M4(2)C3xD4C3xM4(2)D4.C8C3xD4.C8
kernelC3xD4.C8C2xC48C3xM5(2)C3xC8oD4D4.C8C3xM4(2)C3xC4oD4C2xC16M5(2)C8oD4C3xD4C3xQ8M4(2)C4oD4D4Q8C24C2xC6C8C22C3C1
# reps11112222224444882244816

Matrix representation of C3xD4.C8 in GL3(F97) generated by

3500
010
001
,
100
0033
0470
,
9600
0033
0500
,
2200
0568
0415
G:=sub<GL(3,GF(97))| [35,0,0,0,1,0,0,0,1],[1,0,0,0,0,47,0,33,0],[96,0,0,0,0,50,0,33,0],[22,0,0,0,5,41,0,68,5] >;

C3xD4.C8 in GAP, Magma, Sage, TeX

C_3\times D_4.C_8
% in TeX

G:=Group("C3xD4.C8");
// GroupNames label

G:=SmallGroup(192,156);
// by ID

G=gap.SmallGroup(192,156);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1522,248,2111,102,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^2=1,d^8=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b*c>;
// generators/relations

Export

Subgroup lattice of C3xD4.C8 in TeX

׿
x
:
Z
F
o
wr
Q
<