extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1C4≀C2 = C6.C4≀C2 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 48 | | C6.1C4wrC2 | 192,10 |
C6.2C4≀C2 = C4⋊Dic3⋊C4 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 48 | | C6.2C4wrC2 | 192,11 |
C6.3C4≀C2 = C4.8Dic12 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 192 | | C6.3C4wrC2 | 192,15 |
C6.4C4≀C2 = C4.17D24 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 96 | | C6.4C4wrC2 | 192,18 |
C6.5C4≀C2 = C42.D6 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 96 | | C6.5C4wrC2 | 192,23 |
C6.6C4≀C2 = C42.2D6 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 192 | | C6.6C4wrC2 | 192,24 |
C6.7C4≀C2 = C12.8C42 | φ: C4≀C2/C42 → C2 ⊆ Aut C6 | 48 | | C6.7C4wrC2 | 192,82 |
C6.8C4≀C2 = C23.35D12 | φ: C4≀C2/M4(2) → C2 ⊆ Aut C6 | 48 | | C6.8C4wrC2 | 192,26 |
C6.9C4≀C2 = C22.2D24 | φ: C4≀C2/M4(2) → C2 ⊆ Aut C6 | 48 | | C6.9C4wrC2 | 192,29 |
C6.10C4≀C2 = D12⋊2C8 | φ: C4≀C2/M4(2) → C2 ⊆ Aut C6 | 96 | | C6.10C4wrC2 | 192,42 |
C6.11C4≀C2 = Dic6⋊2C8 | φ: C4≀C2/M4(2) → C2 ⊆ Aut C6 | 192 | | C6.11C4wrC2 | 192,43 |
C6.12C4≀C2 = C12.3C42 | φ: C4≀C2/M4(2) → C2 ⊆ Aut C6 | 48 | | C6.12C4wrC2 | 192,114 |
C6.13C4≀C2 = C12.2C42 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.13C4wrC2 | 192,91 |
C6.14C4≀C2 = C12.57D8 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.14C4wrC2 | 192,93 |
C6.15C4≀C2 = C12.26Q16 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 192 | | C6.15C4wrC2 | 192,94 |
C6.16C4≀C2 = (C6×D4)⋊C4 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.16C4wrC2 | 192,96 |
C6.17C4≀C2 = (C6×Q8)⋊C4 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.17C4wrC2 | 192,97 |
C6.18C4≀C2 = C42.7D6 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.18C4wrC2 | 192,99 |
C6.19C4≀C2 = C42.8D6 | φ: C4≀C2/C4○D4 → C2 ⊆ Aut C6 | 192 | | C6.19C4wrC2 | 192,102 |
C6.20C4≀C2 = C3×D4⋊C8 | central extension (φ=1) | 96 | | C6.20C4wrC2 | 192,131 |
C6.21C4≀C2 = C3×Q8⋊C8 | central extension (φ=1) | 192 | | C6.21C4wrC2 | 192,132 |
C6.22C4≀C2 = C3×C22.SD16 | central extension (φ=1) | 48 | | C6.22C4wrC2 | 192,133 |
C6.23C4≀C2 = C3×C23.31D4 | central extension (φ=1) | 48 | | C6.23C4wrC2 | 192,134 |
C6.24C4≀C2 = C3×C42.C22 | central extension (φ=1) | 96 | | C6.24C4wrC2 | 192,135 |
C6.25C4≀C2 = C3×C42.2C22 | central extension (φ=1) | 192 | | C6.25C4wrC2 | 192,136 |
C6.26C4≀C2 = C3×C42⋊6C4 | central extension (φ=1) | 48 | | C6.26C4wrC2 | 192,145 |