Copied to
clipboard

G = D12:2C8order 192 = 26·3

2nd semidirect product of D12 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:2C8, C12.54D8, C12.49SD16, C42.192D6, C12.3M4(2), C4:C8:1S3, C3:2(D4:C8), C4.1(S3xC8), C6.10C4wrC2, C12.3(C2xC8), C2.7(D6:C8), (C4xD12).6C2, C4.1(C8:S3), C4.27(D4:S3), (C2xD12).11C4, (C2xC4).109D12, (C2xC12).225D4, C6.5(C22:C8), C4:Dic3.14C4, C6.3(D4:C4), (C4xC12).41C22, C2.1(C6.D8), C2.1(D12:C4), C22.34(D6:C4), C4.15(Q8:2S3), (C4xC3:C8):1C2, (C3xC4:C8):1C2, (C2xC4).65(C4xS3), (C2xC12).48(C2xC4), (C2xC4).265(C3:D4), (C2xC6).45(C22:C4), SmallGroup(192,42)

Series: Derived Chief Lower central Upper central

C1C12 — D12:2C8
C1C3C6C2xC6C2xC12C4xC12C4xD12 — D12:2C8
C3C6C12 — D12:2C8
C1C2xC4C42C4:C8

Generators and relations for D12:2C8
 G = < a,b,c | a12=b2=c8=1, bab=a-1, cac-1=a7, cbc-1=a3b >

Subgroups: 264 in 82 conjugacy classes, 35 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, C23, Dic3, C12, C12, D6, C2xC6, C42, C22:C4, C4:C4, C2xC8, C22xC4, C2xD4, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xC12, C22xS3, C4xC8, C4:C8, C4xD4, C2xC3:C8, C4:Dic3, D6:C4, C4xC12, C2xC24, S3xC2xC4, C2xD12, D4:C8, C4xC3:C8, C3xC4:C8, C4xD12, D12:2C8
Quotients: C1, C2, C4, C22, S3, C8, C2xC4, D4, D6, C22:C4, C2xC8, M4(2), D8, SD16, C4xS3, D12, C3:D4, C22:C8, D4:C4, C4wrC2, S3xC8, C8:S3, D6:C4, D4:S3, Q8:2S3, D4:C8, C6.D8, D6:C8, D12:C4, D12:2C8

Smallest permutation representation of D12:2C8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 76)(2 75)(3 74)(4 73)(5 84)(6 83)(7 82)(8 81)(9 80)(10 79)(11 78)(12 77)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 50)(20 49)(21 60)(22 59)(23 58)(24 57)(25 42)(26 41)(27 40)(28 39)(29 38)(30 37)(31 48)(32 47)(33 46)(34 45)(35 44)(36 43)(61 89)(62 88)(63 87)(64 86)(65 85)(66 96)(67 95)(68 94)(69 93)(70 92)(71 91)(72 90)
(1 69 58 33 77 85 24 38)(2 64 59 28 78 92 13 45)(3 71 60 35 79 87 14 40)(4 66 49 30 80 94 15 47)(5 61 50 25 81 89 16 42)(6 68 51 32 82 96 17 37)(7 63 52 27 83 91 18 44)(8 70 53 34 84 86 19 39)(9 65 54 29 73 93 20 46)(10 72 55 36 74 88 21 41)(11 67 56 31 75 95 22 48)(12 62 57 26 76 90 23 43)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,76)(2,75)(3,74)(4,73)(5,84)(6,83)(7,82)(8,81)(9,80)(10,79)(11,78)(12,77)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,60)(22,59)(23,58)(24,57)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(61,89)(62,88)(63,87)(64,86)(65,85)(66,96)(67,95)(68,94)(69,93)(70,92)(71,91)(72,90), (1,69,58,33,77,85,24,38)(2,64,59,28,78,92,13,45)(3,71,60,35,79,87,14,40)(4,66,49,30,80,94,15,47)(5,61,50,25,81,89,16,42)(6,68,51,32,82,96,17,37)(7,63,52,27,83,91,18,44)(8,70,53,34,84,86,19,39)(9,65,54,29,73,93,20,46)(10,72,55,36,74,88,21,41)(11,67,56,31,75,95,22,48)(12,62,57,26,76,90,23,43)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,76)(2,75)(3,74)(4,73)(5,84)(6,83)(7,82)(8,81)(9,80)(10,79)(11,78)(12,77)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,60)(22,59)(23,58)(24,57)(25,42)(26,41)(27,40)(28,39)(29,38)(30,37)(31,48)(32,47)(33,46)(34,45)(35,44)(36,43)(61,89)(62,88)(63,87)(64,86)(65,85)(66,96)(67,95)(68,94)(69,93)(70,92)(71,91)(72,90), (1,69,58,33,77,85,24,38)(2,64,59,28,78,92,13,45)(3,71,60,35,79,87,14,40)(4,66,49,30,80,94,15,47)(5,61,50,25,81,89,16,42)(6,68,51,32,82,96,17,37)(7,63,52,27,83,91,18,44)(8,70,53,34,84,86,19,39)(9,65,54,29,73,93,20,46)(10,72,55,36,74,88,21,41)(11,67,56,31,75,95,22,48)(12,62,57,26,76,90,23,43) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,76),(2,75),(3,74),(4,73),(5,84),(6,83),(7,82),(8,81),(9,80),(10,79),(11,78),(12,77),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,50),(20,49),(21,60),(22,59),(23,58),(24,57),(25,42),(26,41),(27,40),(28,39),(29,38),(30,37),(31,48),(32,47),(33,46),(34,45),(35,44),(36,43),(61,89),(62,88),(63,87),(64,86),(65,85),(66,96),(67,95),(68,94),(69,93),(70,92),(71,91),(72,90)], [(1,69,58,33,77,85,24,38),(2,64,59,28,78,92,13,45),(3,71,60,35,79,87,14,40),(4,66,49,30,80,94,15,47),(5,61,50,25,81,89,16,42),(6,68,51,32,82,96,17,37),(7,63,52,27,83,91,18,44),(8,70,53,34,84,86,19,39),(9,65,54,29,73,93,20,46),(10,72,55,36,74,88,21,41),(11,67,56,31,75,95,22,48),(12,62,57,26,76,90,23,43)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D8E···8L12A12B12C12D12E12F12G12H24A···24H
order1222223444444444466688888···8121212121212121224···24
size11111212211112222121222244446···6222244444···4

48 irreducible representations

dim1111111222222222222444
type+++++++++++
imageC1C2C2C2C4C4C8S3D4D6M4(2)D8SD16C4xS3D12C3:D4C4wrC2S3xC8C8:S3D4:S3Q8:2S3D12:C4
kernelD12:2C8C4xC3:C8C3xC4:C8C4xD12C4:Dic3C2xD12D12C4:C8C2xC12C42C12C12C12C2xC4C2xC4C2xC4C6C4C4C4C4C2
# reps1111228121222222444112

Matrix representation of D12:2C8 in GL4(F73) generated by

07200
17200
0001
00720
,
72100
0100
0001
0010
,
63000
06300
006767
00676
G:=sub<GL(4,GF(73))| [0,1,0,0,72,72,0,0,0,0,0,72,0,0,1,0],[72,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0],[63,0,0,0,0,63,0,0,0,0,67,67,0,0,67,6] >;

D12:2C8 in GAP, Magma, Sage, TeX

D_{12}\rtimes_2C_8
% in TeX

G:=Group("D12:2C8");
// GroupNames label

G:=SmallGroup(192,42);
// by ID

G=gap.SmallGroup(192,42);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,100,1123,570,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^2=c^8=1,b*a*b=a^-1,c*a*c^-1=a^7,c*b*c^-1=a^3*b>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<