Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C12

Direct product G=N×Q with N=C2×Q8 and Q=C12
dρLabelID
Q8×C2×C12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=C2×Q8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊C12 = (C2×Q8)⋊C12φ: C12/C2C6 ⊆ Out C2×Q832(C2xQ8):C12192,998
(C2×Q8)⋊2C12 = C3×C23.31D4φ: C12/C3C4 ⊆ Out C2×Q848(C2xQ8):2C12192,134
(C2×Q8)⋊3C12 = C3×C423C4φ: C12/C3C4 ⊆ Out C2×Q8484(C2xQ8):3C12192,160
(C2×Q8)⋊4C12 = C2×C4×SL2(𝔽3)φ: C12/C4C3 ⊆ Out C2×Q864(C2xQ8):4C12192,996
(C2×Q8)⋊5C12 = C3×C23.67C23φ: C12/C6C2 ⊆ Out C2×Q8192(C2xQ8):5C12192,824
(C2×Q8)⋊6C12 = C3×C23.C23φ: C12/C6C2 ⊆ Out C2×Q8484(C2xQ8):6C12192,843
(C2×Q8)⋊7C12 = C6×Q8⋊C4φ: C12/C6C2 ⊆ Out C2×Q8192(C2xQ8):7C12192,848
(C2×Q8)⋊8C12 = C3×C23.38D4φ: C12/C6C2 ⊆ Out C2×Q896(C2xQ8):8C12192,852
(C2×Q8)⋊9C12 = C6×C4≀C2φ: C12/C6C2 ⊆ Out C2×Q848(C2xQ8):9C12192,853
(C2×Q8)⋊10C12 = C3×C42⋊C22φ: C12/C6C2 ⊆ Out C2×Q8484(C2xQ8):10C12192,854
(C2×Q8)⋊11C12 = C3×C23.32C23φ: C12/C6C2 ⊆ Out C2×Q896(C2xQ8):11C12192,1408

Non-split extensions G=N.Q with N=C2×Q8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C2×Q8).C12 = M4(2).A4φ: C12/C2C6 ⊆ Out C2×Q8324(C2xQ8).C12192,1013
(C2×Q8).2C12 = C3×C42.C22φ: C12/C3C4 ⊆ Out C2×Q896(C2xQ8).2C12192,135
(C2×Q8).3C12 = C3×C4.6Q16φ: C12/C3C4 ⊆ Out C2×Q8192(C2xQ8).3C12192,139
(C2×Q8).4C12 = C3×C42.3C4φ: C12/C3C4 ⊆ Out C2×Q8484(C2xQ8).4C12192,162
(C2×Q8).5C12 = C8×SL2(𝔽3)φ: C12/C4C3 ⊆ Out C2×Q864(C2xQ8).5C12192,200
(C2×Q8).6C12 = C2×C8.A4φ: C12/C4C3 ⊆ Out C2×Q864(C2xQ8).6C12192,1012
(C2×Q8).7C12 = C3×Q8⋊C8φ: C12/C6C2 ⊆ Out C2×Q8192(C2xQ8).7C12192,132
(C2×Q8).8C12 = C3×(C22×C8)⋊C2φ: C12/C6C2 ⊆ Out C2×Q896(C2xQ8).8C12192,841
(C2×Q8).9C12 = C6×C4.10D4φ: C12/C6C2 ⊆ Out C2×Q896(C2xQ8).9C12192,845
(C2×Q8).10C12 = C3×C84Q8φ: C12/C6C2 ⊆ Out C2×Q8192(C2xQ8).10C12192,879
(C2×Q8).11C12 = C3×Q8○M4(2)φ: C12/C6C2 ⊆ Out C2×Q8484(C2xQ8).11C12192,1457
(C2×Q8).12C12 = Q8×C24φ: trivial image192(C2xQ8).12C12192,878
(C2×Q8).13C12 = C6×C8○D4φ: trivial image96(C2xQ8).13C12192,1456

׿
×
𝔽