Copied to
clipboard

G = (C2×Q8)⋊C12order 192 = 26·3

The semidirect product of C2×Q8 and C12 acting via C12/C2=C6

non-abelian, soluble

Aliases: (C2×Q8)⋊C12, (C4×Q8)⋊1C6, C22⋊C4.1A4, C22.5(C4×A4), Q8.2(C2×C12), C2.1(D4.A4), C23.25(C2×A4), (C22×Q8).2C6, C23.32C23⋊C3, (C4×SL2(𝔽3))⋊3C2, (C2×SL2(𝔽3))⋊1C4, C22.15(C22×A4), SL2(𝔽3).8(C2×C4), (C22×SL2(𝔽3)).1C2, (C2×SL2(𝔽3)).25C22, C2.7(C2×C4×A4), (C2×C4).2(C2×A4), (C2×Q8).36(C2×C6), SmallGroup(192,998)

Series: Derived Chief Lower central Upper central

C1C2Q8 — (C2×Q8)⋊C12
C1C2Q8C2×Q8C2×SL2(𝔽3)C22×SL2(𝔽3) — (C2×Q8)⋊C12
Q8 — (C2×Q8)⋊C12
C1C22C22⋊C4

Generators and relations for (C2×Q8)⋊C12
 G = < a,b,c,d | a2=b4=d12=1, c2=b2, ab=ba, ac=ca, dad-1=ab2, cbc-1=b-1, dbd-1=b2c, dcd-1=abc >

Subgroups: 245 in 86 conjugacy classes, 27 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C2×C4, C2×C4, Q8, Q8, C23, C12, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C2×Q8, C2×Q8, SL2(𝔽3), C2×C12, C22×C6, C42⋊C2, C4×Q8, C4×Q8, C22×Q8, C3×C22⋊C4, C2×SL2(𝔽3), C2×SL2(𝔽3), C23.32C23, C4×SL2(𝔽3), C22×SL2(𝔽3), (C2×Q8)⋊C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, A4, C2×C6, C2×C12, C2×A4, C4×A4, C22×A4, C2×C4×A4, D4.A4, (C2×Q8)⋊C12

Smallest permutation representation of (C2×Q8)⋊C12
On 32 points
Generators in S32
(1 7)(2 4)(3 5)(6 8)(9 15)(10 30)(11 17)(12 32)(13 19)(14 22)(16 24)(18 26)(20 28)(21 27)(23 29)(25 31)
(1 12 5 26)(2 23 6 9)(3 18 7 32)(4 29 8 15)(10 20 24 22)(11 13 25 27)(14 30 28 16)(17 19 31 21)
(1 20 5 22)(2 31 6 17)(3 14 7 28)(4 25 8 11)(9 21 23 19)(10 26 24 12)(13 15 27 29)(16 32 30 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,7)(2,4)(3,5)(6,8)(9,15)(10,30)(11,17)(12,32)(13,19)(14,22)(16,24)(18,26)(20,28)(21,27)(23,29)(25,31), (1,12,5,26)(2,23,6,9)(3,18,7,32)(4,29,8,15)(10,20,24,22)(11,13,25,27)(14,30,28,16)(17,19,31,21), (1,20,5,22)(2,31,6,17)(3,14,7,28)(4,25,8,11)(9,21,23,19)(10,26,24,12)(13,15,27,29)(16,32,30,18), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32)>;

G:=Group( (1,7)(2,4)(3,5)(6,8)(9,15)(10,30)(11,17)(12,32)(13,19)(14,22)(16,24)(18,26)(20,28)(21,27)(23,29)(25,31), (1,12,5,26)(2,23,6,9)(3,18,7,32)(4,29,8,15)(10,20,24,22)(11,13,25,27)(14,30,28,16)(17,19,31,21), (1,20,5,22)(2,31,6,17)(3,14,7,28)(4,25,8,11)(9,21,23,19)(10,26,24,12)(13,15,27,29)(16,32,30,18), (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,7),(2,4),(3,5),(6,8),(9,15),(10,30),(11,17),(12,32),(13,19),(14,22),(16,24),(18,26),(20,28),(21,27),(23,29),(25,31)], [(1,12,5,26),(2,23,6,9),(3,18,7,32),(4,29,8,15),(10,20,24,22),(11,13,25,27),(14,30,28,16),(17,19,31,21)], [(1,20,5,22),(2,31,6,17),(3,14,7,28),(4,25,8,11),(9,21,23,19),(10,26,24,12),(13,15,27,29),(16,32,30,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32)]])

38 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E···4L6A···6F6G6H6I6J12A···12H
order1222223344444···46···6666612···12
size1111224422226···64···488888···8

38 irreducible representations

dim11111111333344
type++++++-
imageC1C2C2C3C4C6C6C12A4C2×A4C2×A4C4×A4D4.A4D4.A4
kernel(C2×Q8)⋊C12C4×SL2(𝔽3)C22×SL2(𝔽3)C23.32C23C2×SL2(𝔽3)C4×Q8C22×Q8C2×Q8C22⋊C4C2×C4C23C22C2C2
# reps12124428121424

Matrix representation of (C2×Q8)⋊C12 in GL7(𝔽13)

1000000
0100000
0010000
00012000
00001200
0000010
0005801
,
12000000
12010000
12100000
00001200
0001000
00085111
00005112
,
01210000
01200000
11200000
00091000
00010400
00011277
00011946
,
0800000
0080000
8000000
0000010
00011277
0001000
000010211

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,5,0,0,0,0,12,0,8,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,12,12,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,8,0,0,0,0,12,0,5,5,0,0,0,0,0,1,1,0,0,0,0,0,11,12],[0,0,1,0,0,0,0,12,12,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,9,10,11,11,0,0,0,10,4,2,9,0,0,0,0,0,7,4,0,0,0,0,0,7,6],[0,0,8,0,0,0,0,8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,11,1,0,0,0,0,0,2,0,10,0,0,0,1,7,0,2,0,0,0,0,7,0,11] >;

(C2×Q8)⋊C12 in GAP, Magma, Sage, TeX

(C_2\times Q_8)\rtimes C_{12}
% in TeX

G:=Group("(C2xQ8):C12");
// GroupNames label

G:=SmallGroup(192,998);
// by ID

G=gap.SmallGroup(192,998);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,1373,92,438,172,775,285,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=d^12=1,c^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,d*b*d^-1=b^2*c,d*c*d^-1=a*b*c>;
// generators/relations

׿
×
𝔽