Extensions 1→N→G→Q→1 with N=C6 and Q=C2.D8

Direct product G=N×Q with N=C6 and Q=C2.D8
dρLabelID
C6×C2.D8192C6xC2.D8192,859

Semidirect products G=N:Q with N=C6 and Q=C2.D8
extensionφ:Q→Aut NdρLabelID
C61(C2.D8) = C2×C6.Q16φ: C2.D8/C4⋊C4C2 ⊆ Aut C6192C6:1(C2.D8)192,521
C62(C2.D8) = C2×C241C4φ: C2.D8/C2×C8C2 ⊆ Aut C6192C6:2(C2.D8)192,664

Non-split extensions G=N.Q with N=C6 and Q=C2.D8
extensionφ:Q→Aut NdρLabelID
C6.1(C2.D8) = C12.53D8φ: C2.D8/C4⋊C4C2 ⊆ Aut C6192C6.1(C2.D8)192,38
C6.2(C2.D8) = C6.6D16φ: C2.D8/C4⋊C4C2 ⊆ Aut C6192C6.2(C2.D8)192,48
C6.3(C2.D8) = C6.SD32φ: C2.D8/C4⋊C4C2 ⊆ Aut C6192C6.3(C2.D8)192,49
C6.4(C2.D8) = C24.7Q8φ: C2.D8/C4⋊C4C2 ⊆ Aut C6964C6.4(C2.D8)192,52
C6.5(C2.D8) = C12.C42φ: C2.D8/C4⋊C4C2 ⊆ Aut C6192C6.5(C2.D8)192,88
C6.6(C2.D8) = C241C8φ: C2.D8/C2×C8C2 ⊆ Aut C6192C6.6(C2.D8)192,17
C6.7(C2.D8) = C485C4φ: C2.D8/C2×C8C2 ⊆ Aut C6192C6.7(C2.D8)192,63
C6.8(C2.D8) = C486C4φ: C2.D8/C2×C8C2 ⊆ Aut C6192C6.8(C2.D8)192,64
C6.9(C2.D8) = C48.C4φ: C2.D8/C2×C8C2 ⊆ Aut C6962C6.9(C2.D8)192,65
C6.10(C2.D8) = C12.9C42φ: C2.D8/C2×C8C2 ⊆ Aut C6192C6.10(C2.D8)192,110
C6.11(C2.D8) = C3×C81C8central extension (φ=1)192C6.11(C2.D8)192,141
C6.12(C2.D8) = C3×C22.4Q16central extension (φ=1)192C6.12(C2.D8)192,146
C6.13(C2.D8) = C3×C163C4central extension (φ=1)192C6.13(C2.D8)192,172
C6.14(C2.D8) = C3×C164C4central extension (φ=1)192C6.14(C2.D8)192,173
C6.15(C2.D8) = C3×C8.4Q8central extension (φ=1)962C6.15(C2.D8)192,174

׿
×
𝔽