metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C48.1C4, C4.18D24, C12.36D8, C24.14Q8, C16.1Dic3, C8.13Dic6, C22.1Dic12, (C2×C16).5S3, (C2×C48).7C2, (C2×C6).7Q16, C24.71(C2×C4), (C2×C8).311D6, (C2×C4).73D12, C12.25(C4⋊C4), C6.9(C2.D8), C3⋊2(C8.4Q8), (C2×C12).393D4, C8.16(C2×Dic3), C2.5(C24⋊1C4), C24.C4.1C2, C4.10(C4⋊Dic3), (C2×C24).383C22, SmallGroup(192,65)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C48.C4
G = < a,b | a48=1, b4=a24, bab-1=a23 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 55 13 91 25 79 37 67)(2 78 14 66 26 54 38 90)(3 53 15 89 27 77 39 65)(4 76 16 64 28 52 40 88)(5 51 17 87 29 75 41 63)(6 74 18 62 30 50 42 86)(7 49 19 85 31 73 43 61)(8 72 20 60 32 96 44 84)(9 95 21 83 33 71 45 59)(10 70 22 58 34 94 46 82)(11 93 23 81 35 69 47 57)(12 68 24 56 36 92 48 80)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,55,13,91,25,79,37,67)(2,78,14,66,26,54,38,90)(3,53,15,89,27,77,39,65)(4,76,16,64,28,52,40,88)(5,51,17,87,29,75,41,63)(6,74,18,62,30,50,42,86)(7,49,19,85,31,73,43,61)(8,72,20,60,32,96,44,84)(9,95,21,83,33,71,45,59)(10,70,22,58,34,94,46,82)(11,93,23,81,35,69,47,57)(12,68,24,56,36,92,48,80)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,55,13,91,25,79,37,67)(2,78,14,66,26,54,38,90)(3,53,15,89,27,77,39,65)(4,76,16,64,28,52,40,88)(5,51,17,87,29,75,41,63)(6,74,18,62,30,50,42,86)(7,49,19,85,31,73,43,61)(8,72,20,60,32,96,44,84)(9,95,21,83,33,71,45,59)(10,70,22,58,34,94,46,82)(11,93,23,81,35,69,47,57)(12,68,24,56,36,92,48,80) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,55,13,91,25,79,37,67),(2,78,14,66,26,54,38,90),(3,53,15,89,27,77,39,65),(4,76,16,64,28,52,40,88),(5,51,17,87,29,75,41,63),(6,74,18,62,30,50,42,86),(7,49,19,85,31,73,43,61),(8,72,20,60,32,96,44,84),(9,95,21,83,33,71,45,59),(10,70,22,58,34,94,46,82),(11,93,23,81,35,69,47,57),(12,68,24,56,36,92,48,80)]])
54 conjugacy classes
class | 1 | 2A | 2B | 3 | 4A | 4B | 4C | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 16A | ··· | 16H | 24A | ··· | 24H | 48A | ··· | 48P |
order | 1 | 2 | 2 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 16 | ··· | 16 | 24 | ··· | 24 | 48 | ··· | 48 |
size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 24 | 24 | 24 | 24 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | + | + | - | - | + | + | - | |||
image | C1 | C2 | C2 | C4 | S3 | Q8 | D4 | Dic3 | D6 | D8 | Q16 | Dic6 | D12 | D24 | Dic12 | C8.4Q8 | C48.C4 |
kernel | C48.C4 | C24.C4 | C2×C48 | C48 | C2×C16 | C24 | C2×C12 | C16 | C2×C8 | C12 | C2×C6 | C8 | C2×C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 2 | 1 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 16 |
Matrix representation of C48.C4 ►in GL2(𝔽97) generated by
11 | 0 |
0 | 44 |
0 | 1 |
75 | 0 |
G:=sub<GL(2,GF(97))| [11,0,0,44],[0,75,1,0] >;
C48.C4 in GAP, Magma, Sage, TeX
C_{48}.C_4
% in TeX
G:=Group("C48.C4");
// GroupNames label
G:=SmallGroup(192,65);
// by ID
G=gap.SmallGroup(192,65);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,28,141,176,184,675,192,1684,102,6278]);
// Polycyclic
G:=Group<a,b|a^48=1,b^4=a^24,b*a*b^-1=a^23>;
// generators/relations
Export