Extensions 1→N→G→Q→1 with N=C2 and Q=D6.D4

Direct product G=N×Q with N=C2 and Q=D6.D4
dρLabelID
C2×D6.D496C2xD6.D4192,1064


Non-split extensions G=N.Q with N=C2 and Q=D6.D4
extensionφ:Q→Aut NdρLabelID
C2.1(D6.D4) = Dic3⋊C4⋊C4central extension (φ=1)192C2.1(D6.D4)192,214
C2.2(D6.D4) = C22.58(S3×D4)central extension (φ=1)96C2.2(D6.D4)192,223
C2.3(D6.D4) = (C2×C4)⋊9D12central extension (φ=1)96C2.3(D6.D4)192,224
C2.4(D6.D4) = D6⋊C45C4central extension (φ=1)96C2.4(D6.D4)192,228
C2.5(D6.D4) = C4⋊C45Dic3central extension (φ=1)192C2.5(D6.D4)192,539
C2.6(D6.D4) = D6⋊C46C4central extension (φ=1)96C2.6(D6.D4)192,548
C2.7(D6.D4) = D6⋊C47C4central extension (φ=1)96C2.7(D6.D4)192,549
C2.8(D6.D4) = (C2×C4).Dic6central stem extension (φ=1)192C2.8(D6.D4)192,219
C2.9(D6.D4) = C6.C22≀C2central stem extension (φ=1)96C2.9(D6.D4)192,231
C2.10(D6.D4) = C6.(C4⋊D4)central stem extension (φ=1)96C2.10(D6.D4)192,234
C2.11(D6.D4) = D6.2SD16central stem extension (φ=1)96C2.11(D6.D4)192,421
C2.12(D6.D4) = D6.4SD16central stem extension (φ=1)96C2.12(D6.D4)192,422
C2.13(D6.D4) = C4.Q8⋊S3central stem extension (φ=1)96C2.13(D6.D4)192,425
C2.14(D6.D4) = C6.(C4○D8)central stem extension (φ=1)96C2.14(D6.D4)192,427
C2.15(D6.D4) = D6.5D8central stem extension (φ=1)96C2.15(D6.D4)192,441
C2.16(D6.D4) = D6.2Q16central stem extension (φ=1)96C2.16(D6.D4)192,443
C2.17(D6.D4) = C2.D8⋊S3central stem extension (φ=1)96C2.17(D6.D4)192,444
C2.18(D6.D4) = C2.D87S3central stem extension (φ=1)96C2.18(D6.D4)192,447
C2.19(D6.D4) = (C2×C12).54D4central stem extension (φ=1)192C2.19(D6.D4)192,541
C2.20(D6.D4) = (C2×C4)⋊3D12central stem extension (φ=1)96C2.20(D6.D4)192,550
C2.21(D6.D4) = (C2×C12).289D4central stem extension (φ=1)96C2.21(D6.D4)192,551
C2.22(D6.D4) = (C2×C12).290D4central stem extension (φ=1)96C2.22(D6.D4)192,552

׿
×
𝔽