Copied to
clipboard

G = D6.4SD16order 192 = 26·3

2nd non-split extension by D6 of SD16 acting via SD16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6.4SD16, C4.Q87S3, D6⋊C830C2, C4⋊C4.37D6, (C2×C8).138D6, C12⋊D4.4C2, C2.D2431C2, C6.D814C2, C2.23(S3×SD16), C6.39(C2×SD16), C12.28(C4○D4), C4.73(C4○D12), C2.21(Q83D6), C6.69(C8⋊C22), C12.Q817C2, (C2×Dic3).41D4, (C22×S3).83D4, C22.215(S3×D4), (C2×C24).285C22, (C2×C12).279C23, C4.25(Q83S3), (C2×D12).73C22, C33(C23.46D4), C2.12(D6.D4), C4⋊Dic3.111C22, C6.42(C22.D4), (S3×C4⋊C4)⋊6C2, (C3×C4.Q8)⋊16C2, (C2×C6).284(C2×D4), (C2×C3⋊C8).57C22, (S3×C2×C4).32C22, (C3×C4⋊C4).72C22, (C2×C4).382(C22×S3), SmallGroup(192,422)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D6.4SD16
C1C3C6C2×C6C2×C12S3×C2×C4S3×C4⋊C4 — D6.4SD16
C3C6C2×C12 — D6.4SD16
C1C22C2×C4C4.Q8

Generators and relations for D6.4SD16
 G = < a,b,c,d | a6=b2=c8=1, d2=a3, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a3b, dcd-1=c3 >

Subgroups: 400 in 114 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, D6, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22⋊C8, D4⋊C4, C4.Q8, C4.Q8, C2×C4⋊C4, C4⋊D4, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, C23.46D4, C12.Q8, C6.D8, D6⋊C8, C2.D24, C3×C4.Q8, S3×C4⋊C4, C12⋊D4, D6.4SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, C22×S3, C22.D4, C2×SD16, C8⋊C22, C4○D12, S3×D4, Q83S3, C23.46D4, D6.D4, S3×SD16, Q83D6, D6.4SD16

Smallest permutation representation of D6.4SD16
On 96 points
Generators in S96
(1 72 88 17 77 30)(2 65 81 18 78 31)(3 66 82 19 79 32)(4 67 83 20 80 25)(5 68 84 21 73 26)(6 69 85 22 74 27)(7 70 86 23 75 28)(8 71 87 24 76 29)(9 36 61 49 94 48)(10 37 62 50 95 41)(11 38 63 51 96 42)(12 39 64 52 89 43)(13 40 57 53 90 44)(14 33 58 54 91 45)(15 34 59 55 92 46)(16 35 60 56 93 47)
(1 35)(2 94)(3 37)(4 96)(5 39)(6 90)(7 33)(8 92)(9 78)(10 66)(11 80)(12 68)(13 74)(14 70)(15 76)(16 72)(17 93)(18 36)(19 95)(20 38)(21 89)(22 40)(23 91)(24 34)(25 42)(26 64)(27 44)(28 58)(29 46)(30 60)(31 48)(32 62)(41 82)(43 84)(45 86)(47 88)(49 65)(50 79)(51 67)(52 73)(53 69)(54 75)(55 71)(56 77)(57 85)(59 87)(61 81)(63 83)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 45 17 58)(2 48 18 61)(3 43 19 64)(4 46 20 59)(5 41 21 62)(6 44 22 57)(7 47 23 60)(8 42 24 63)(9 78 49 65)(10 73 50 68)(11 76 51 71)(12 79 52 66)(13 74 53 69)(14 77 54 72)(15 80 55 67)(16 75 56 70)(25 92 83 34)(26 95 84 37)(27 90 85 40)(28 93 86 35)(29 96 87 38)(30 91 88 33)(31 94 81 36)(32 89 82 39)

G:=sub<Sym(96)| (1,72,88,17,77,30)(2,65,81,18,78,31)(3,66,82,19,79,32)(4,67,83,20,80,25)(5,68,84,21,73,26)(6,69,85,22,74,27)(7,70,86,23,75,28)(8,71,87,24,76,29)(9,36,61,49,94,48)(10,37,62,50,95,41)(11,38,63,51,96,42)(12,39,64,52,89,43)(13,40,57,53,90,44)(14,33,58,54,91,45)(15,34,59,55,92,46)(16,35,60,56,93,47), (1,35)(2,94)(3,37)(4,96)(5,39)(6,90)(7,33)(8,92)(9,78)(10,66)(11,80)(12,68)(13,74)(14,70)(15,76)(16,72)(17,93)(18,36)(19,95)(20,38)(21,89)(22,40)(23,91)(24,34)(25,42)(26,64)(27,44)(28,58)(29,46)(30,60)(31,48)(32,62)(41,82)(43,84)(45,86)(47,88)(49,65)(50,79)(51,67)(52,73)(53,69)(54,75)(55,71)(56,77)(57,85)(59,87)(61,81)(63,83), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,45,17,58)(2,48,18,61)(3,43,19,64)(4,46,20,59)(5,41,21,62)(6,44,22,57)(7,47,23,60)(8,42,24,63)(9,78,49,65)(10,73,50,68)(11,76,51,71)(12,79,52,66)(13,74,53,69)(14,77,54,72)(15,80,55,67)(16,75,56,70)(25,92,83,34)(26,95,84,37)(27,90,85,40)(28,93,86,35)(29,96,87,38)(30,91,88,33)(31,94,81,36)(32,89,82,39)>;

G:=Group( (1,72,88,17,77,30)(2,65,81,18,78,31)(3,66,82,19,79,32)(4,67,83,20,80,25)(5,68,84,21,73,26)(6,69,85,22,74,27)(7,70,86,23,75,28)(8,71,87,24,76,29)(9,36,61,49,94,48)(10,37,62,50,95,41)(11,38,63,51,96,42)(12,39,64,52,89,43)(13,40,57,53,90,44)(14,33,58,54,91,45)(15,34,59,55,92,46)(16,35,60,56,93,47), (1,35)(2,94)(3,37)(4,96)(5,39)(6,90)(7,33)(8,92)(9,78)(10,66)(11,80)(12,68)(13,74)(14,70)(15,76)(16,72)(17,93)(18,36)(19,95)(20,38)(21,89)(22,40)(23,91)(24,34)(25,42)(26,64)(27,44)(28,58)(29,46)(30,60)(31,48)(32,62)(41,82)(43,84)(45,86)(47,88)(49,65)(50,79)(51,67)(52,73)(53,69)(54,75)(55,71)(56,77)(57,85)(59,87)(61,81)(63,83), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,45,17,58)(2,48,18,61)(3,43,19,64)(4,46,20,59)(5,41,21,62)(6,44,22,57)(7,47,23,60)(8,42,24,63)(9,78,49,65)(10,73,50,68)(11,76,51,71)(12,79,52,66)(13,74,53,69)(14,77,54,72)(15,80,55,67)(16,75,56,70)(25,92,83,34)(26,95,84,37)(27,90,85,40)(28,93,86,35)(29,96,87,38)(30,91,88,33)(31,94,81,36)(32,89,82,39) );

G=PermutationGroup([[(1,72,88,17,77,30),(2,65,81,18,78,31),(3,66,82,19,79,32),(4,67,83,20,80,25),(5,68,84,21,73,26),(6,69,85,22,74,27),(7,70,86,23,75,28),(8,71,87,24,76,29),(9,36,61,49,94,48),(10,37,62,50,95,41),(11,38,63,51,96,42),(12,39,64,52,89,43),(13,40,57,53,90,44),(14,33,58,54,91,45),(15,34,59,55,92,46),(16,35,60,56,93,47)], [(1,35),(2,94),(3,37),(4,96),(5,39),(6,90),(7,33),(8,92),(9,78),(10,66),(11,80),(12,68),(13,74),(14,70),(15,76),(16,72),(17,93),(18,36),(19,95),(20,38),(21,89),(22,40),(23,91),(24,34),(25,42),(26,64),(27,44),(28,58),(29,46),(30,60),(31,48),(32,62),(41,82),(43,84),(45,86),(47,88),(49,65),(50,79),(51,67),(52,73),(53,69),(54,75),(55,71),(56,77),(57,85),(59,87),(61,81),(63,83)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,45,17,58),(2,48,18,61),(3,43,19,64),(4,46,20,59),(5,41,21,62),(6,44,22,57),(7,47,23,60),(8,42,24,63),(9,78,49,65),(10,73,50,68),(11,76,51,71),(12,79,52,66),(13,74,53,69),(14,77,54,72),(15,80,55,67),(16,75,56,70),(25,92,83,34),(26,95,84,37),(27,90,85,40),(28,93,86,35),(29,96,87,38),(30,91,88,33),(31,94,81,36),(32,89,82,39)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222344444444666888812121212121224242424
size111166242224481212122224412124488884444

33 irreducible representations

dim111111112222222244444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C4○D4SD16C4○D12C8⋊C22Q83S3S3×D4S3×SD16Q83D6
kernelD6.4SD16C12.Q8C6.D8D6⋊C8C2.D24C3×C4.Q8S3×C4⋊C4C12⋊D4C4.Q8C2×Dic3C22×S3C4⋊C4C2×C8C12D6C4C6C4C22C2C2
# reps111111111112144411122

Matrix representation of D6.4SD16 in GL4(𝔽73) generated by

1000
0100
0001
00721
,
1000
0100
0077
001466
,
676700
66700
003013
006043
,
1000
07200
00759
001466
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,72,0,0,1,1],[1,0,0,0,0,1,0,0,0,0,7,14,0,0,7,66],[67,6,0,0,67,67,0,0,0,0,30,60,0,0,13,43],[1,0,0,0,0,72,0,0,0,0,7,14,0,0,59,66] >;

D6.4SD16 in GAP, Magma, Sage, TeX

D_6._4{\rm SD}_{16}
% in TeX

G:=Group("D6.4SD16");
// GroupNames label

G:=SmallGroup(192,422);
// by ID

G=gap.SmallGroup(192,422);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,64,926,219,100,851,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=1,d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^3*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽